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Statistical Prosodic Modeling: From Corpus Design
to Parameter Estimation

Jerome R. Bellegarda, Senior Member, IEEE, Kim E. A. Silverman, Kevin Lenzo, and Victoria Anderson

Abstract—The increasing availability of carefully designed
and collected speech corpora opens up new possibilities for the
statistical estimation of formal multivariate prosodic models. At
Apple Computer, statistical prosodic modeling exploits the Vic-
toria corpus, recently created to broadly support ongoing speech
synthesis research and development. This corpus is composed of
five constituent parts, each designed to cover a specific aspect of
speech synthesis: polyphones, prosodic contexts, reiterant speech,
function word sequences, and continuous speech. This paper
focuses on the use of the Victoria corpus in the statistical estima-
tion of duration and pitch models for Apple’s next-generation
text-to-speech system in Macintosh OS X. Duration modeling
relies primarily on the subcorpus of prosodic contexts, which is
instrumental to uncover empirical evidence in favor of a piece-
wise linear transformation in the well-known sums-of-products
approach. Pitch modeling relies primarily on the subcorpus
of reiterant speech, which makes possible the optimization of
superpositional pitch models with more accurate underlying
smooth contours. Experimental results illustrate the improved
prosodic representation resulting from these new duration and
pitch models.

Index Terms—Intonation modeling, prosodic representation,
prosody generation, speech database design and collection, text-
to-speech systems.

I. INTRODUCTION

I N RECENT years, text-to-speech (TTS) systems have come
to rely more and more on data-driven, statistical modeling.

One reason has been the emergence of concatenative synthesis,
which implies the existence of an automatic procedure to prop-
erly select candidate units from a recorded speech database. An-
other factor has been the steady shift from handwritten, hand-
tuned pitch and duration rules to formal multivariate prosodic
models, which requires the associated model parameters to be
statistically derived from a training corpus. This has sparked in-
terest in large scale, systematic data collection, of the kind car-
ried out over the past decade in the field of speech recognition
(see, e.g., [16], [23]). Whereas a limited number of systemati-
cally elicited exemplars might have been sufficient to, say, write
a particular pitch or duration rule, many more observations are
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usually required to automatically uncover (and/or validate) the
equivalent rule from a database. The more complex the under-
lying model, the more attention should be paid to the scale re-
quirements of the collection.

In prosodic modeling, for instance, the number of model pa-
rameters is necessarily quite large. This is especially true when
the prosodic phonological markup is used to control more than
the traditional pitch and duration, such as the characteristics of
the glottal excitation function and overall spectral slope. Other
aspects of prosody, such as differences between citation forms
and connected speech, issues associated with variable speaking
rate, or the problem of paragraph-length prosody, entail the es-
timation of even more parameters.

The reliability of such estimation depends critically not just
on the quantity, but also on the coverage and consistency of the
data available. Thus, the design principles and collection proce-
dures underlying the training corpus have a direct impact on the
quality, communicative effectiveness, and naturalness of syn-
thetic speech. Beyond the minimal requirement that statistical
models be estimated on “enough data,” there is no standard ap-
proach to corpus design and collection. Corpora vary from sys-
tematically generated nonsense words, through lists of discrete
unrelated sentences, to news broadcasts. Some contain a single
speaker, others span multiple speakers. Those corpora based on
a single speaker are often recorded in disparate sessions over
an extended period of time, with little consistency in recording
conditions or speaking style. And there is typically little effort to
systematically control the intonation. This variety can be traced
to divergent goals in data collection. Is the purpose just to pro-
vide speech synthesis units? Or to also provide data for studies
in methods of signal representation? Should the same speaker
be used to construct both acoustic and prosodic models?

An effort to formally explore this process was recently un-
dertaken at Apple Computer, with the aim to support the mul-
tiple facets of ongoing speech synthesis research and develop-
ment. This entails different kinds of material and recording con-
ditions than typically used to provide 100% coverage of small
synthesis units, such as diphones or demi-syllables. The out-
come of this broader outlook was a rich corpus of very large
size, informally referred to as theVictoria corpus. This corpus
is composed of five major subcorpora, each designed to cover a
specific aspect of speech synthesis: polyphones, prosodic con-
texts, reiterant speech, function word sequences, and continuous
speech. It was spoken in general U.S. English by one linguisti-
cally trained adult female. This corpus was instrumental in the
statistical estimation of more accurate duration and pitch models
for Apple’s next-generation text-to-speech system in Macintosh
OS X.
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Accordingly, this paper has a dual goal. First, it describes the
design and collection of the Victoria corpus, and second, it ex-
amines how this corpus has been exploited so far for training
new duration and pitch models. The paper is organized as fol-
lows. In Section II, we give an overview of the corpus and its
various constituent parts. Section III identifies some of the im-
portant procedural issues to be addressed in collecting this kind
of corpus. Section IV describes how this data was used for sta-
tistical duration modeling. Section V is the counterpart of Sec-
tion IV for pitch modeling. Finally, Section VI reports on a se-
ries of experiments illustrating the resulting improvements in
prosodic representation.

II. V ICTORIA CORPUS

The Victoria corpus is intended to

1) support research into high-quality signal representation;
2) provide source units for concatenative synthesis;
3) be of sufficient quality to support detailed pitch extrac-

tion, pitch epoch detection, and inverse filtering for esti-
mation of glottal source parameters.

Following is an overview of each of its five constituent parts.

A. Polyphones

This segment of the corpus was designed to provide various
types of units for concatenative synthesis, such as common
syllables or polysyllabic strings, words, common word stems,
and/or common inflectional morphemes. It uses the most
common 28 000 words of U.S. English, as estimated from
several text corpora available from the LDC [19]. These words
were arranged into pairs, which were in turn placed in sets of
two or three (separated by commas) to form “sentences,” using
a rich sampling of phoneme concatenations as the phonetic
criteria for word groups. Half of these sentences ended with
a period, and half with a question mark. A representative
example is

rife undertaking, anyhow fanatic, grab disruptive? (1)

By design, each word was spoken with four distinct intonational
patterns1 (cf. [30])

1) , a sentence-final falling nuclear accent, as if
followed by a period;

2) , a nuclear falling–rising pattern that typically
occurs before a sentence-internal punctuation such as
comma, colon, and quotation mark;

1The intonational notation used throughout this work comes from the tone
and break indices (ToBI) transcription system [30]. Briefly, this system views
intonation as a linear sequence of relatively local targets or gestures that are
sparsely distributed over a text. These events are composed of just two primi-
tive tones: high (H) and low (L). These are all linguistic choices by the speaker,
in order to fulfill discourse roles and convey information not derivable from the
words and syntax alone. Pitch targets or gestures that are associated with par-
ticular words, to give them a particular prominence or relationship with sur-
rounding topics, are known aspitch accents. Pitch accents have a star in their
transcription (e.g.,H , L+H ), and are associated with a particular syllable
of the accented word. Major phrase and utterances boundaries are marked by
boundary tones, transcribed with% (e.g.,L%) and attached to the rightmost
edge of the phrase. Finally, the region between the last pitch accent in a phrase
and its rightmost edge is governed by aphrase tone(H orL).

3) , a nuclear high-rise that is common in un-
marked yes-no questions;

4) , a prenuclear high pitch accent.

The end result is that each of the 28 000 words was produced in
four utterance positions

1) utterance-initial;
2) phrase-initial but utterance-medial;
3) phrase-final but utterance-medial;
4) utterance-final.

These by no means exhaustively represent the rich variation
used in normal everyday conversation, but they cover the most
common and perceptually-salient subset in the informative fac-
tual discourse to which synthetic speech is often applied.

The speaker for this corpus was linguistically trained, familiar
with the transcription system and the intended intonation con-
tours. Hence, although the texts were largely nonsensical, the
intonation was produced consistently and in a natural way. Ar-
guably, these are “citation form” contours, which only occur in
real conversation at the most communicatively important places.
One of the characteristics of normal human speech is that less in-
formation-carrying stretches of text are often under-articulated:
we believe that this may also be true of the intonational contrasts
during such passages. In order to model this under-articulation,
however, it makes sense to begin with a parameterized model of
the citation cases, and then investigate appropriate adjustments
to the parameters such as fundamental frequency range and ac-
cent height during reduced articulation. Other sections of the
Victoria corpus (described below) intentionally contain appro-
priate data to support such investigations.

One particular aspect of prosodic modeling which can be
studied with thePolyphonessubcorpus is the potential interac-
tion between tonal structure and durational structure. A common
approach to prosodic synthesis is to generate duration from the
phrasal position, stress structure, and accent locations, and then
to subsequently generate the associated pitch contour from the
accent tones. However, this ordering assumes that the durational
structure depends only on accent location, not on accent type.
For instance, this approach would generate the same duration
for an accented phrase-final word whether it contained a fall,
a rise, or a fall–rise. Examples in [27] suggest that this is an
inaccurate oversimplification. ThePolyphonessubcorpus is de-
signed to allow research into whether such tonal independence
really exists.

B. Prosodic Contexts

This segment of the corpus was designed to systematically
cover all syllable shapes with rich phonetic variation. It comple-
ments the above segment, in that it comprises the most common
prosodic boundaries in English which are not represented at all
in the Polyphonessubcorpus. Here we systematically vary the
distance between pitch accents, and between accents and the
next prosodic boundary.

Specifically, theProsodic Contextssubcorpus focuses on

1) how pitch and duration of accented syllables vary with the
distance to the next rightmost prosodic event [28];

2) utterance-internal prosodic boundaries [29];
3) final lengthening;
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4) alignment of pitch and associated segmental structure in
different syllable types.

Each utterance consists of two accented words, preceded by sev-
eral unstressed function words. The words were chosen to sys-
tematically vary the number of syllables between the two ac-
cented syllables between 0 and 5, and to systematically vary the
position of the word boundary. Thus, for example

as a (2)

has the two accents (marked in boldface on “frill ” and “cheap”)
adjacent

as a custo ily (3)

has two unaccented syllables between the accents (on “swamp”
and “-mar-”) with the word boundary adjacent to the left, and

the te ity (4)

also has two unaccented syllables between the accents (on
“ -mer-” and “throne”) but this time with the word boundary
adjacent to the right.

The design decision was made to only use real words (from
the PRONLEX dictionary; cf. [19]), rather than to construct
nonsense words to achieve the desired items. This was because
we could not be confident that phrases of nonsense words would
be spoken sufficiently naturally to represent normal English
prosody. A grammar was constructed of English syllables, with
phonemes collapsed into major classes. Words were chosen
by a greedy algorithm to ensure that every possible syllable
type occurred in each of the two relevant accent positions, and
within each syllable type there was systematic variation of
the instances of each of the phonemes in each of the classes.
Thus, for example, in the syllable class “voiceless fricative,
sonorant, high vowel, sonorant,” if the word “frill ” were used
for one item, then the next time that syllable class was required
a different word such as “swill” would be used instead.

The list generation procedure was completely automated to
conform to these interacting sets of constraints, so that each
generated list of phrases depended only on an initial condition
(the first word chosen). Obviously, not all possibilities could be
filled: sometimes there was no word available for a particular
set of constraints. By using different initial conditions, different
instances of the list of phrases were obtained. We recorded two
different such lists. One contained 733 phrases, the other 631.
Together these yielded 50 797 phonemes.

Each utterance was spoken in two ways: 1) a pitch ac-
cent on both words (usually the accent on the second word was
downstepped or reflected final lowering) and 2) a on each
word, but with an intervening tone associated with an utter-
ance-internal intermediate phrase boundary.

To also support studies in speaking rate variation, we have
recorded one pass through this subcorpus at the speaker’s fastest
possible speaking rate. Note that we did not attempt to repeat
this exercise at the speaker’s slowest possible (!) speaking rate.
This was for two reasons: 1) there is little use for slow speech
in speech synthesis applications and 2) we believe that most in-
stances of slow speech, where speakers and listeners perceive

that the speaking rate has slowed down to increase clarity, actu-
ally consists of more frequent and more major prosodic bound-
aries.

C. Reiterant Speech

This segment of the corpus was designed to support detailed
modeling of pitch contours for the intonations in the above two
segments, but uncontaminated by segmental perturbations. Re-
iterant speech [18] is commonly used to elicit smooth and nat-
ural-sounding fundamental frequency contours, in order to un-
derstand and model the relationship between fundamental fre-
quency, which is an acoustically defined parameter, and intona-
tion, which is a linguistic abstraction and a perceptual phenom-
enon (see, e.g., [11]). It is based on the observation that fun-
damental frequency contours typically show steep fluctuations
and discontinuities in the regions of obstruent consonants such
stops and fricatives, whereas they are much smoother and con-
tinuous in vowels and sonorant consonants such as nasals.

Semantically-coherent utterances were constructed to cover
a superset of the intonational melodies in the above sub-
corpora, on a subset of the syllable structures. Specifically,
the three tunes from thePolyphonessubcorpus ( ,

, and ), with the accent on the first of the
two content words in each phrase, were intended to model
the way these common and communicately important tunes
vary when stretched over texts of different length; the two
tunes from theProsodic Contextssubcorpus (
and ) were intended to model the influence
of an utterance-internal phrase boundary (marked with a low
phrase accent) on the preceding and following accents; and the
additional tune was intended to model the

accent in a variety of syllabic structures and polysyllabic
contexts.

Each utterance was spoken with the intended intonation, then
immediately followed by a version where every open syllable
was replaced with “ma” and every closed syllable replaced with
“mom” (cf. [18]). To illustrate, Fig. 1 shows the pitch contour
resulting from the recording of

but it 'sa nular concate tion (5)

while Fig. 2 corresponds to the same pitch contour for the asso-
ciated recording

mom mom ma ma mom mom ma ma mom (6)

in which the only consonant is /m/. The contour of Fig. 2 is
clearly smoother, in part because 1) all the unvoiced gaps have
been eliminated and 2) the choice of the continuant /m/ gener-
ates comparatively small segmental perturbations. Note that it
is much easier to see the (relatively invariant) local shape of a

pitch accent on Fig. 2 (from 1.65 s to the peak). Also much
clearer is the interpolation from the preceding accent target up
to the beginning of the laryngeal gesture (from 0.96 to 1.65
s on Fig. 2).

Pitch modeling typically has a dual aim: 1) to fit a parametric
model to the shape of the fundamental frequency contours
with minimal contamination by segmental effects and 2)
to model the alignment of the contours with the segmental
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Fig. 1. Original pitch contour.

Fig. 2. Pitch contour of reiterant speech.

structure. Silverman [27] found that when stretches of reiterant
speech were embedded in frame sentences spoken with neutral
declarative intonation, the reiterant speech exhibited normal

intrinsic vowel and consonant durations, and showed the same
well-known durational interactions with adjacent phonemes as
for normal speech. In addition, Steele (reported in [28]) and
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others (e.g., [9], [21]) found stress-related lengthening and
phrase-final lengthening on reiterant open and closed syllables.
On the basis of such phonetic research, we believe that the
reiterant speech collected in this subcorpus (i.e., produced by
a phonetically trained speaker, with an intended intonation
contour, spoken immediately after a real sentence with the
same syllable structure and intonation) is sufficiently realistic
to support a first pass of a model of segmental/suprasegmental
alignment (cf. Section V). For example, we can model the
locations of accent-related peaks, relative to the start of the
vowel in the associated syllable, as a function of the distance in
syllables to the next intonational phrase boundary.

Arguably, a model of the alignment of intonational events
with the phonetic segments that carry those events requires nat-
ural speech and concurrent modeling of the underlying smooth
contours and the segmental effects. The reiterant speech alone is
insufficient for such a model: for example we suspect that word
boundary locations, ambisyllabicity, and distinctions between
intervocalic singletons and geminates, may be less well repre-
sented in reiterant speech than in natural speech. The Victoria
corpus contains other material suitable to perform this concur-
rent modeling (see Section II-E), once quantitative models of
the component influences on fundamental frequency contours
have been developed. The advantage of using reiterant speech
is that the smooth contours illustrated in Fig. 2 enable accu-
rate fitting of parameterized pitch models using gradient descent
and multiple regression. The method and results obtained so far
will be discussed in Section V, along with some implications for
prosodic phonology.

D. Function Word Sequences

This segment of the corpus was designed to cover frequent
sequences of unstressed function words (such as “and he has,”
“ in that,” and “that we have”) and common clitic groups (such
as “couldn’t’ve”). These heavily co-articulated sequences are
notoriously difficult to synthesize, extremely common in con-
nected speech, yet totally lacking in the above subcorpora. The
list of function word sequences was automatically derived from
theWall Street Journalcorpus [16].

Each unstressed sequence was spoken between two accented
content words. A representative example is

those in the (7)

for the unstressed sequence “those in the.” The content words
were chosen such that the consonants adjacent to the function
words were 1) easily segmentable phonetically and 2) system-
atically varied in their place and manner of articulation. This
was in order to provide polysyllabic concatenative units which
would be fit in a variety of articulatory contexts. In addition, this
subcorpus was also intended to give an extra set of contexts for
duration modeling.

E. Continuous Speech

In all prior segments, utterances are in citation form, which
runs the danger of producing over-articulated synthetic speech.
Besides, citation forms tend to comprise largely unconnected

short sentences. This is inherently inadequate to model
larger-span effects, such as prosodic behavior in very long
sentences, paragraph-length prosody [27], and the variations in
speaking rate for communicative connected speech.

This segment of the corpus was designed to address this
issue. Both read and spontaneous speech were captured. The
read speech segment comprises short stories chosen by the
speaker for their literary style being easy to read out loud.
The speaker familiarized herself with the content before
reading them, in order to minimize speech errors and to
produce prosody and articulation appropriate to the content.
The spontaneous speech segment was produced by having the
speaker describe some properties of images. Two examples
include 1) looking at a map and describing directions to travel
between certain points and 2) looking at an grid of the “faces”
method of multivariate data display and describing inferable
data patterns.

III. COLLECTION PROCEDURES

Speech synthesis corpora demand much higher signal quality
than typically acceptable for other speech technologies. This re-
quires minimization of background noise, phase distortion, and
spectral distortion. Dual recording of acoustic and glottal sig-
nals is highly desirable for accurate pitch extraction and identi-
fication of glottal closure. In addition, speaking style and con-
sistency are two difficult and related issues which need to be
addressed.

A. Noise Compensation

Standard professional recording procedures, such as high-end
audio equipment and a structurally isolated double-walled
acoustic studio, were found to be insufficient to control the
background noise. We iteratively traced the sources of this
noise by spectrally analyzing it, identifying the most prominent
partials and resonances, and then isolating the relevant causes
in the recording setup and circuitry. We found, for example,
that placing the pre-amplifier in the recording booth, and
running it off batteries instead of grid power, reduced the 60 Hz
harmonics and decreased the susceptibility to radio-frequency
interference from computers in a nearby lab.

One persistent source of noise was the wideband hiss gener-
ated internally within the microphone itself. This was found to
be true for a wide range of professional broadcast-quality mi-
crophones. We successfully reduced it by 2–3 dB by simultane-
ously recording from two such microphones next to each other
and adding their signals, thereby neutralizing the two associated
(uncorrelated) background hisses. The two microphones were
suspended in rubber shock absorbers to reduce vibrations from
the floor, at a constant distance (12 to 13 cm) from the speaker’s
mouth.

Another source of noise in digital recordings is nonlineari-
ties in the low-order bits of a digital-to-analog converter. To ad-
dress that, we recorded direct-to-disk at 20 bits/sample and sub-
sequently rounded to 16 bits. The signal-to-noise ratio (com-
puted spectral signal peak to spectral noise peak) was in the
range 52–55 dB for all measured recordings.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 22, 2008 at 21:17 from IEEE Xplore.  Restrictions apply.



BELLEGARDA et al.: STATISTICAL PROSODIC MODELING 57

Fig. 3. Pitch contour of simultaneous EGG signal.

B. Dual Recording

An electroglottograph (EGG) signal was recorded simul-
taneously with the acoustic signal. The capture of dual acoustic
and EGG channels is extremely useful for extracting very
smooth and reliable fundamental frequency contours, and
provides an extra source of information to help determine the
glottal closure.

To illustrate, Fig. 3 shows the pitch contour associated with
the example of Figs. 1 and 2, but this time extracted from the
corresponding EGG signal, i.e., measured near the excitation of
the vocal tract. A comparison of Figs. 2 and 3 shows that even re-
iterant speech using the consonant /m/ still exhibits a consistent
pattern of segmental perturbations. In Fig. 2, fundamental fre-
quency appears to be raised by 5–10 Hz for about 1 to 2 glottal
periods at the release of each /m/ closure into the next vowel,
and depressed by about the same amount at the transition from
the preceding vowel into each closure of the /m/. These consis-
tent transient effects in the acoustic signal are not present in the
excitation signal, as measured by the EGG. We hypothesize that
these are therefore caused by a change in the length of the signal
path through the vocal tract.

During an open vowel the majority of the acoustical energy
is transmitted through the mouth. When the oral cavity is oc-
cluded by the lips closing for /m/, the acoustical energy is nec-
essarily transmitted through the nasal cavity, entailing a slightly
longer path. So at the point in time when the lips close there is
a Doppler-like effect: the onset of the next glottal period is de-
layed because of a longer travel time through the nose, which
means that the glottal epoch spanning the time of lip closure
appears longer, and therefore of lower pitch. Similarly, at the
release of /m/ into the next vowel, the glottal period appears

shortened and therefore of higher pitch. The size of the change
in fundamental frequency (5–10 Hz) indeed corresponds to what
we would predict by calculating the delay from the length of the
oral and nasal tracts, based on the speed of sound.

Further evidence in favor of this hypothesis is that the mag-
nitude of the effect seems to depend on the speed of consonant
closure and release gestures. We notice, for example, that a tau-
tosyllabic post-vocalic /n/ or /ng/, as in “sin” or “ sing,” typically
lacks any apparent transient depressed pitch. These nasals tend
to have slow closing gestures, so the gradual change in vocal
tract length is spread out across much of the preceding vowel.

This remark notwithstanding, note that the EGG signal is not
completely free of segmental perturbations. Fig. 3 does show a
(nontransient) tendency for the fundamental frequency to be de-
pressed in the glottal signal throughout the closure of /m/ (cf. for
example, from 0.62 to 0.69 s, and 1.63 to 1.71 s). The presence
of this segmental perturbation in the EGG suggests that it is at
least partly due to the change in vocal tract impedance (looking
forward from the glottis). During closure there is some back
pressure which decreases the trans-glottal pressure gradient and
therefore causes a decrease in the rate of glottal oscillation.

All EGG signals were measured using a single-electrode
EGG device. In retrospect, this was adequate but not completely
successful. Subsequent analysis of the recordings showed that
occasionally the speaker’s larynx would move above or below
the electrodes, and this would cause the signal to disappear
momentarily. This occurred most often during the pitch peaks
of nuclear accented syllables. We were able to minimize these
dropouts by providing an oscilloscope display of the EGG
signal in the speaker’s line of sight. The speaker was thereby
able to monitor the signal for potential dropouts, often adjusting
the electrodes and re-recording as necessary. Nevertheless this
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increased the cognitive load on the speaker and the overall
duration of the collection. For this type of recordings, we
recommend using multiple electrodes, or investigating sonar or
radar techniques to capture laryngeal activity.

C. Speaking Style

Previous corpora have generally either left the speaking style
up to the speaker, or have requested a professional news-reading
style. Although the latter does tend to reduce variation in the
signal amplitude, it implies a sustained level of vocal effort
across all syllables of all words, which is not typical in normal
conversation. (In regular day-to-day communicative speech, this
degree of laryngeal tension and subglottal pressure is reserved
for just the most salient syllables of the few most important
words.) Since the spectral correlates have more high-frequency
energy during voiced speech, we have found that the news-
reading style results in a perceptually unpleasant, somewhat stri-
dent voice quality.

After exploring a few different styles we adopted a more re-
laxed, slightly more breathy speaking style. This style is used
in the acting community to produce an impression of more inti-
macy. It is usually produced very close to the microphone, and
is used, for example, when an actor is “talking to himself” or
narrating his internal thoughts for the audience’s benefit. We
have found this to produce a softer, more pleasant voice quality
in synthetic speech. Note that this relaxed laryngeal mode pro-
duces a larger open quotient in the larynx, and hence increases
1) the proportion of subglottal coupling and 2) the proportion
of nonharmonic noise (breathiness). Consequently the signal is
less well-modeled by such frequency-domain representations
as formant analysis or linear prediction. We use a time-domain
signal representation, which is more robust to the corresponding
assumption violations.

D. Consistency

A common problem in concatenative synthesis is that the
units do not have consistent glottal slope, vocal effort, or per-
ceived intensity. This produces discontinuities at the concate-
nation points which are not evident in the formant structure
per se. It is difficult but crucially important to ensure that the
speaker maintains a consistent speaking style, articulation rate,
and vocal effort across the whole corpus. For reference, each
session started with playing example recordings of the “target”
voice quality, intonation, vocal effort, and pitch range. These
examples were available all the time and often referred to by
the speaker. In addition, for the initial recording sessions, an in-
dependent listener also performed close, live monitoring of the
intended production, correcting the speaker as necessary.

IV. DURATION MODELING

In natural speech, durations of phonetic segments strongly de-
pend on contextual factors such as the identities of surrounding
segments, stress, accent, and phrase boundaries (cf., e.g., [35]).
For synthetic speech to sound natural, these duration patterns
must be closely reproduced. Among the various methods that
have been proposed for duration prediction, a “sums-of-prod-
ucts” (SoP) approach has a number of useful advantages [20].

A. SoP Modeling

Assume there exist contextual factors influencing dura-
tion, and denote by the scale vector quantifying the duration
effects associated with theth factor , . For ex-
ample, if corresponds to the stress factor, it might comprise
two levels, “stressed” and “unstressed.” In the simplest case, the
effect of this factor on duration can be captured by a vector com-
prising two elements, say ,
with appropriate values of stressed and

unstressed estimated from the data. Now
let a given phonetic segment be characterized by an input vector

, where each represents the observed level of
the associated factor , . Generically, the duration

of this phonetic segment can be described as

(8)

where and could be, in principle, two arbitrarily com-
plex functions of the various durations involved.

The SoP model assumes thatis a monotonically increasing
transformation, and that can be decomposed as a sum of prod-
ucts of single factor parameters. This amounts to postulating the
following form for (8)

(9)

where
unknownbut strictly increasing;
some collection of indices associated with subsets of
the set of factors;
collection of indices of factors occurring in theth
subset and the scale function;
simply a mapping from discrete to numerical values.

In this expression, choosing , ,
and leads to various derivatives of the additive model
originally proposed by Klatt [14]. Alternatively, choosing

, , and leads to mul-
tiplicative models such as described by van Santen [35]. The
evidence appears to indicate that the latter perform better than
the former. Two reasons why this might be the case are 1) the
distributions tend to be less skewed after the log transformation
and 2) the fractional approach underlying multiplicative models
is better suited for more extreme durations. Thus, the latter set
up is normally used. There is, however, no evidence that the log
transformation is optimal. Rather than eliminating skewness in
the data, it tends to merely reduce (and reverse) it. And while
it is true that contexts such as phrase-final position are likely to
lengthen long phonemes more than short phonemes, there is no
a priori reason for all factors to be strictly multiplicative across
all durations. We will revisit this point shortly.

Note that the right-hand side of (9) is linear in some appro-
priate parameterization(s) of the scales . In practice, SoP
methods are therefore closely related to multiple linear regres-
sion analysis in either linear or log domain, depending on the
transformation selected [34].
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B. Theoretical Observations

The origin of the SoP approach can be traced to the “ax-
iomatic measurement” theorem [15], as applied to duration
data. Briefly, for (9) to hold, it isnecessarythat the duration
function be generalized additive. This is
the case if has a decomposable structure, i.e., if all compo-
nents “contribute their effects independently
to the attribute in question” [15]. Furthermore, for ordinal reg-
ularity to hold, must exhibit monotone decomposability,
meaning not only the function but also each per-component
mapping is monotonically increasing. Strictly speaking, there
are therefore two conditions that must be satisfied for the SoP
description to apply to duration modeling: joint independence
of the variables, and monotonicity of the transformation and
scale functions.

Diagnosis of an -variable function on the basis of joint in-
dependence is a matter of testing each -tuple of vari-
ables for independence of theth. This is generally a com-
plex process: to illustrate, for a simple polynomial function with

, it requires following all the steps mentioned in the flow-
chart in [15, p. 345]. In the case of duration data, such diagnosis
is not going to be successful, since joint independence clearly
will not hold for all subsetsof factors. For ex-
ample, accent and phrasal position interact in a complex way in
their influence on vowel duration, i.e., these factors do not con-
tribute their effects independently. More generally, any form of
simultaneously additive and multiplicative interaction violates
joint independence, and thus decomposability.

It has been argued that most interactions follow the principle
of directional invariance [32], meaning that their effects are
amplificatory, rather than reversed or otherwise permuted [35].
This smooth general behavior often offers a justification for ap-
plying (9) anyway. As pointed out in [35], the “regular patterns
of amplificatory interactions” make it “quite plausible thatsome
sums-of-products model will fit the [appropriately transformed]
durations” (emphasis ours). Reversal interactions do exist, how-
ever. For example, “when we compare words such asbutter, re-
turn, finer, andbeneath, we find that the /t/ burst inreturn is
longer than the /n/ inbeneath, while the opposite holds con-
trasting the /t/ burst inbutterwith the /n/ infiner …. This is a
reversal of the effects of the segmental identity factor brought
about by a change in the stress levels of the surrounding vowels”
[32]. In such situations, it would appear that
is not generalized additive, and the choice of the usual log func-
tion for is probably not optimal.

In fact, given the joint independence violation, the mono-
tonicity condition on the transformation may no longer apply
at all. Losing this theoretical guideline may substantially com-
plicate the search for a suitable. As the optimal may no
longer be strictly increasing, this opens up the possibility of in-
flection regions, or even discontinuities. Transformations other
than the log function, in particular, may result in better models,
as we first showed in [4], and further explored in [31]. Contin-
uing the same line of investigation, we will argue in favor of a
piecewise linear formalism, which appears to be robust against
all interactions, amplificatory or otherwise. This reasoning is
grounded in the following empirical observations.

Fig. 4. Effects of adding more regression variables.

C. Empirical Observations

All empirical evidence regarding duration modeling was
gathered from theProsodic Contextssubcorpus mentioned
in Section II. After collection, phoneme boundaries were
automatically aligned using a speaker-dependent version of the
Apple large vocabulary continuous speech recognition system.
A SoP algorithm was implemented via weighted least-squares
multiple regression, as implemented in the Sv3.2 software
package. One distinct model was computed for each of 15
classes of phonemes, across which, for simplicity, we used a
common set of factors. These included accent, preceding and
following phoneme identity, and similarly well-known factors
reported in the literature. In all cases, the standard log transfor-
mation was used. The overall fit obtained was comparable to
published results.

However, close analysis of the residuals showed that they
were not spread evenly throughout the data range. Specifically,
long durations tended to be underestimated and short dura-
tions overestimated. This is, of course, a common modeling
phenomenon, which typically becomes less and less severe as
the models acquire more independent variables representing
higher-order interactions between contexts.

Fig. 4 illustrates this error reduction for a subset of the above
data (consisting of the four unvoiced fricatives). The predicted
and observed values have each been sorted in ascending order,
and the two distributions plotted against each other. If the pre-
dictions were perfect, all the points would lie on the dotted grey
diagonal line. Instead, overestimated durations are above the
line and underestimated durations are below it. The grey filled
circles represent the predictions from a simple, four-factor SoP
model (comprising a total of about 20 regression coefficients),
and the black hollow circles represent a more complex, 40-factor
model (comprising a total of about 200 regression coefficients).
The two models account for 32.6% and 87.2% of the total stan-
dard deviation, respectively. Clearly, the additional parameters
allow the complex model to more closely predict the more ex-
treme observations in the data. Nevertheless, the overall shape of
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(a) (b)

Fig. 5. Transformation with (a) compression at both ends and (b) expansion at both ends.

both sets of predictions suggests that the overestimation of short
durations and underestimation of long durations is a structural
pattern over a wide range of regression equations. Moreover,
this observation is consistent across the entire dataset.

Two solutions could be considered. The traditional approach
(cf. Fig. 4) is to add more independent variables, representing
orthogonal interaction terms, to the regression equation. How-
ever, each variable added represents only one particular higher-
order interaction between factors, and thus only one specific
subset of the data. As more interaction terms are added, they
are trained on fewer and fewer points and account for smaller
and smaller particular subsets of the outliers. At the extreme,
this raises the issue of parameter reliability, as well as general-
ization to new combinations of context.

The other approach is to first apply an appropriate transfor-
mation to the raw durations, to compensate as much as possible
for the structural nature of the pattern observed in the residuals.
This fits naturally within the framework of (9), which leads us
to search for a class of functionscompatible with the above
observations.

D. New Transformation

In fact, the data of Fig. 4 suggests that some interactions are
only amplificatory for long durations: when durations are short,
these interactions seem to exert the opposite influence. This gen-
eral pattern seems to support the need for compression at both
ends of the range, which suggests the presence of at least one in-
flection point in . This observation first led us to consider a si-
nusoidal function [4]. But the parameters in this function turned
out to be somewhat nonintuitive, which called for an alternative
formulation [17]. We then focused on a more conventional sig-
moid function, of the type widely used in neural networks, and
showed that this function yielded better performance, as mea-
sured by the proportion of variance left unexplained by the re-
gression model [31].

What ultimately matters, however, is not the variance left un-
explained in the transform domain, but the variance left unex-
plained in the original domain, where the model is eventually

applied. Compressing the durations at the two extremes of the
range clearly helps improve performance in the transform do-
main, in part by reducing the influence of extreme durations on
the linear regression. By the same token, however, it may not
be as effective in the original domain. This is because, essen-
tially, the extreme durations are now acting even more as out-
liers (with respect to a model which was trained to downplay
their importance). To ensure good performance in the original
domain, it may actually be more appropriate toexpandthe du-
rations at the two ends of the range, to force the model to give
them more weight. To make this possible, we need a more flex-
ible transformation framework than that of either [4] or [31].
This is achieved using the following piecewise linear formula-
tion.

Let and denote the minimum and maximum duration
observed in the training data for the particular phoneme (or class
of phoneme) under study. For each durationobserved, the
associated variable

(10)

takes on normalized values in the interval . The piecewise
linear transformation is then defined by

if ;

if ;

if

(11)

where the parameters, , , and (all nonnegative) help con-
trol the shape of the function. Specifically, the interval de-
fines the identity portion of the transformation, whileand
control the amount of compression/expansion which happens in
the intervals and , respectively. The values
correspond to a compression, and the values corre-
spond to an expansion. The furtherand deviates from 1, the
further the extrema deviate from their original values. Fig. 5 de-
picts the shape of the function (11) for the two sets of values:
1) , , , and and 2) ,
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, , and . Since the four parameters can
be set independently, the function (11) is able to cover a wide
range of behavior.

Referring back to Fig. 4, it seems that, regardless of model
complexity, the residuals for unvoiced fricatives are dispropor-
tionately greater in long durations than in short durations. Thus,
we would expect the associated transformation to impact long
durations more than short durations. From the above, this im-
plies that deviates from 1 more than. This was confirmed
experimentally: for this phoneme class, we found an optimal
value of and . Note that, in general, the op-
timal values of the parameters, , , and depend on the
phoneme (class) identity, since the shape of the function is tied
to the way contextual factors influence the durations of partic-
ular phonemes.

V. PITCH MODELING

Like duration modeling, pitch modeling involves both
phonological and phonetic considerations. Among the various
methods that have been proposed for fundamental frequency
prediction, it is attractive to model these influences sepa-
rately, along the lines of the superpositional approach [5].
Accordingly, we decompose contours into a relatively smooth
underlying pitch contour, and a separate contribution from the
influence of the phonetic segments.

A. Superpositional Modeling

Overall pitch variation is determined by the prosodic into-
national structure, and thereby conveys information about the
semantic role and dialogue function of sentences—information
that cannot be derived from the words themselves. This is the
suprasegmental structureof pitch variation. At the same time,
however, the phonemes that make up the words strongly influ-
ence the more local behavior of pitch variation. These effects are
calledsegmental perturbationsof the underlying smooth vari-
ation. In many intonation synthesis models (e.g., [1], [7], [11],
[33]), modeling smooth pitch contours is considered to be suf-
ficient for intonation synthesis: segmental perturbations are ig-
nored. This belief is often reinforced by referring to the seg-
mental contributions as “microprosody,” implying that they are
microscopic relative to the linguistic influences on pitch con-
tours (in fact, it has often been claimed that they are not per-
ceptible at all!). Nevertheless, data from speech production and
perception argue that both of these influences must be captured
for synthetic speech to sound natural.

Suprasegmental structures (such as pitch accents, phrasal
tones, and the overall pitch range in which these occur) jointly
produce a relatively smooth underlying pitch contour, which
can be thought of as commands sent to the larynx. The phonetic
segments of the utterance which carries this suprasegmental
information perturb the fundamental frequency values away
from this otherwise smooth contour. These segmental pertur-
bations are not negligible: often their magnitude matches or
exceeds that of tonal events such as downstep or different final
boundary tones (cf. Fig. 1). Segmental perturbations are not
random, but rather are systematically related to the identity of

the associated phonetic segments. Listeners indeed expect these
perturbations, and use them to help identify the phonemes [26].
Even more importantly, listeners expect and factor out these
effects when recovering the underlying intonation. It is thus
necessary for them to be correctly modeled in the synthetic
signal for listeners to correctly perceive both the intended
intonation and the segments themselves [27].

We therefore model fundamental frequency contours as a su-
perposition of relatively local segmental perturbations and a
smooth underlying intonation contour (cf. [5], [27]). This ap-
proach is different from other superpositional models (e.g., [11],
[12]) in that the superposition here is strictly limited to the seg-
mental level. We do not decompose the underlying contour into
accentual tunes riding on top of phrasal tunes. Also, in contrast
with decision tree methods (e.g., [8]), we characterize the un-
derlying contour using the ToBI transcription system [3], [30].
This leverages agreement across the major traditions of intona-
tional analysis, and allows us to directly relate the transcription
to typical text processing performed in the front-ends of synthe-
sizers and dialogue systems.

The parameterization in our version of the superpositional
pitch model is amenable to statistical estimation using a suit-
able corpus of data. It assumes negligible interactions between
levels outside of those specifically modeled. For example, the
rate and magnitude of segmental perturbations is possibly re-
lated to oral articulation. In cases where our knowledge of such
interdependencies is sufficient, they can be modeled by an artic-
ulatory synthesizer (cf. [25]). Otherwise, in order to minimize
violations in this assumption, it is beneficial to estimate all the
parameters from a single speaker, speaking in a single and con-
sistent style, within a single recording setup. Hence, by design,
the Victoria corpus provides us with exactly the right kind of
data to refine and optimize such a superpositional pitch model.
The following carries out this optimization within the frame-
work originally proposed in [27], enhancing the approach for a
more accurate smooth contour estimation.

B. Suprasegmental Structure

There are a number of reasons for characterizing supraseg-
mental structure using the ToBI transcription system [30]. While
it may not capture all of the linguistically significant variation
in English intonation, it represents agreement across many dif-
ferent approaches to intonational analysis concerning the major
and most common phenomena to be modeled, and does so in a
way that is relatively free of the strong theoretical differences
between the different approaches. It is less abstract then the
work of [24], while inheriting many of the advantages of that
work. This makes it easy to learn, and produces good agreement
between different transcribers. Most importantly for speech syn-
thesis, the ToBI system was developed to relate discourse anal-
ysis to fundamental frequency contours: the same text will carry
different intonation when spoken in different contexts and with
different discourse roles. Therefore the ability to change the in-
tonation in any text according its discourse role is a requirement
for successful text-to-speech synthesis. This in turn requires
that the intonation model does not merely match the shape of a
corpus of contours, but supports generation of appropriate new

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 22, 2008 at 21:17 from IEEE Xplore.  Restrictions apply.



62 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 9, NO. 1, JANUARY 2001

Fig. 6. Generating pitch contours from ToBI-like transcription.

contours on the basis of linguistic and pragmatic information
obtained from the front-ends of synthesizers and dialogue sys-
tems. In the ToBI system, these contours are specified by the
choice and locations of the pitch accents, phrase accents and
boundary tones.

A common approach to generating pitch contours from
a ToBI-like transcription was first presented by [1], and is
illustrated in Fig. 6. Each component of the accent inventory
was modeled as an abstract shape: accents for example,
consist of a plateau preceded by a vertical “leg,” resembling an
upside-down letter “L.” Final boundary tones consist merely of
a plateau. On a time/frequency plot, these shapes are aligned
with their associated syllables [Fig. 6(a)], and then any gaps
between them are linearly interpolated [Fig. 6(b)]. Then the
contour is causally smoothed by convolution with a rectangular
window whose duration is equivalent to the length of the
plateaux [Fig. 6(c)]. This equivalence is necessary in order to
ensure that the smoothed contour reaches the target values of
the accents. If the window is wider than the plateaux then the
targets will be undershot.

Silverman [27] modified this approach in a number of ways.
The relative heights of fundamental frequency events were
scaled exponentially, rather than linearly. This is psychoacous-

tically more defensible, it allows and tones to be treated
symmetrically, and does away with the need for phrase-final
raising in some question contours. Another modification
concerned the window shape. The rectangular window often
produces very sharp peaks and valleys, and sudden changes
in the direction of pitch contours, as illustrated in Fig. 6(c).
Natural pitch contours do not exhibit such sudden changes
in direction, except when these are induced by segmental
perturbations. Production of such discontinuities in pitch or
its derivatives from a human larynx would require brief mo-
ments of extremely high muscular force, and sudden extreme
changes in muscular force. Studies of human motor control
often characterize muscular movement in terms of peaks of
acceleration and rate of change of acceleration (known as
“jerk”). Nelson [22] found that human speakers economize on
effort by minimizing jerk, and that the minimum-jerk velocity
profile for muscular movement is almost indistinguishable from
simple harmonic motion. Therefore the rectangular window
was replaced with a Hamming window. This minimizes the
higher derivatives, approaching the steps of pitch accents in a
way that reduces jerk and hence speaker effort. It maintains the
model property of guaranteeing that targets are reached, but in
a smoother way [Fig. 6(d)].
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Fig. 7. Nuclear falling and falling–rising accents, aligned byH peak.

Fig. 8. Two-accent contoursH+ L H LL%H –L transition.

C. Smooth Contour Estimation

Still, there are a number of problems associated with the use
of a fixed-duration window to generate the relatively invariant
local shape of pitch accents and the overall global interpolation
between pitch events. At best, this can only be partially suc-
cessful, because the window cannot satisfactorily handle both
the local shapes and the necessary smoothness of the contours.
The issue is illustrated in Figs. 7 and 8. As mentioned earlier,
the suprasegmental behavior of pitch is characterized from the
EGG signal as opposed to the original signal, to minimize seg-
mental contamination.

Fig. 7 shows EGG-derived pitch contours for two of the tunes
previously discussed: 1) a nuclear fall and 2) a nu-
clear fall–rise . Since these tunes are associated with
the most perceptually salient and most semantically important
words, it is important to synthesize them well. This is difficult,
however, when they are spread over different lengths of seg-
mental material and different number of words. In Fig. 7 it is
clear that these two different tunes have much in common. Both
have a pitch peak on the accented word, followed by a steep fall,

no matter how far to the end of the utterance. (In the figure, all
of the contours are aligned by this peak.) The primary differ-
ence between the tunes is the presence or absence of a final rise
corresponding to . This is amenable to being modeled by a
sequence of a low and high target aligned with the end of the ut-
terance, independently of the nuclear to transition. While
this argues in favor of a locally invariant characteristic shape for
the pitch accent, it also transpires that pitch movements have a
variable degree of steepness that cannot be rendered well by a
fixed-duration window. For example, rises tend to be less steep
than falls, and also less steep in prenuclear than nuclear posi-
tion.

Fig. 8 shows EGG-derived pitch contours for the tone se-
quence aligned by the to transition.
The utterances differ in the number of unaccented syllables sep-
arating the from the following . Clearly, the final nu-
clear sequence can be modeled independently of the preceding
material. (Similar plots aligned by the accent show that
it, too, is contextually invariant.) Also strong in Fig. 8 is the ev-
idence that the pitch follows an almost linear interpolation be-
tween the two accents, with all the contours converging at the
start of the small local rising gesture that is the beginning of the
final (cf. frame 378). Again, this argues in favor of a global
interpolation between pitch events, but a fixed-duration window
tuned for fast utterance-final falls runs the risk of approaching
prenuclear accent peaks too steeply.

In the present approach, we keep the basic framework of
parameterizing each EGG-derived pitch contour by a number
of characteristic shapes related to ToBI symbols, and using
linear interpolation to fill gaps between characteristic shapes.
However, the control points associated with the pitch events are
placed more carefully, for example by relaxing the constraint
that the “leg” preceding a tone plateau be vertical. With the
abstract accent shapes thus taking more responsibility for the
local accent shape, the smoothing window is required to do
less work and so the smoothing window can contract. Since
each characteristic shape can be described by a relatively small
number of local targets (typically two or three), we can use
gradient descent tojointly optimize the abstract shapes of
the underlying accents and the window duration. Thus, with
the data from theReiterant Speechcorpus, a single set of
parameters is trained across the entire corpus.

D. Segmental Perturbations

Segmental perturbations comprise such phoneme-level phe-
nomena as phonetic voicing or vowel height. Again using the
superpositional paradigm within the framework of [27], a sep-
arate model is therefore estimated to capture perturbations in-
duced by consonants and vowels. The vowel-induced perturba-
tions are characterized, relative to the underlying smooth con-
tour, by rule-based targets linked by piecewise parabolic seg-
ments. The consonant-induced perturbations are similarly char-
acterized by cubic and parabolic decays in the preceding and
following vowels, respectively. In contrast with [27], the seg-
mental effects are calculated given the (more accurate) smooth
contours empirically estimated as above.

The final pitch model is the superposition of the smooth
model and the two (consonant- and vowel-induced) perturbation
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models. Unlike some other methods, this approach is partic-
ularly well-suited to the analysis of the different components
influencing pitch behavior. For example, it is straightforward
from this model to quantify the effect of voicing on pitch. This
makes it easy to relate the values predicted by the model to the
large body of studies done in various languages over the past
decades.

Note that this approach does not address the issue of inter-
actions between segmental and suprasegmental components of
the model. In order to model all the systematic and perceptu-
ally-relevant variation in natural contours, it would be neces-
sary to jointly optimize both of these components. The Victoria
corpus does support such joint estimation of parameters, and this
optimization will be documented in a forthcoming publication.

VI. EXPERIMENTAL RESULTS

This section illustrates the improved prosodic representation
resulting from the new duration and pitch models. In all cases,
objective assessment measures were used to automatically eval-
uate the models on held-out portions of the Victoria corpus.

A. Duration Modeling

For duration modeling the evaluation criterion was taken to
be the proportion of standard deviation left unexplainedin the
original domain (as opposed to the transform domain). We
first used a gradient descent algorithm to iteratively adjust the
four parameters for each phoneme class, using the goodness
of fit of the subsequent regression (in the original domain) as
the criterion. This produced the following set of parameters,
with the mean indicated in parentheses:
( ); ( );
( ); and ( ). Thus, none of the
resulting shapes showed any compression at either end of the
range, and in a few cases the expansion was substantial. This
underscores the suboptimality of approximating such shapes by
a logarithm curve.

A 40-factor regression model along with the standard loga-
rithmic transformation of the raw durations left 14.4% of the
standard deviation unexplained. The same independent variables
were then regressed against the piecewise linearly transformed
durations, using the same weighted least squares implementa-
tion. This left only 12.3% unexplained, which corresponds to
a reduction of 14.6% in the proportion not accounted for. This
improves slightly on the results of [31], when the evaluation
criterion is applied in the original domain. To put things in
perspective, the root sinusoidal transformation described in [4]
only achieved a reduction of 10.4% with this criterion.

The above experiments were then repeated with a range
of different numbers of equation coefficients, representing
different choices of factors and interaction terms, to eliminate
the possibility that the above result might somehow be linked
to the particular regression model selected. Fig. 9 reports the
outcome, in terms of the percentage of standard deviation left
unexplained as a function of the total number of parameters
in the modeling (i.e., regression coefficients as well as param-
eters required for the transformation). It can be seen that the
piecewise linear transformation (filled triangles) is consistently

Fig. 9. Duration modeling performance.

Fig. 10. Duration error probability distribution.

superior to the log transformation (hollow circles) across the
entire range of parameters considered. Only when very simple
models are involved is the improvement brought about by the
piecewise linear framework somewhat mitigated by the extra
parameters required by the transformation.

A consequence of Fig. 9 is that the piecewise linear transfor-
mation generally provides for a more parsimonious representa-
tion of the regular patterns in the observed data. In other words,
for a given level of performance, the piecewise linear approach
allows the underlying SoP expression to comprise less coeffi-
cients. For example, to leave 12.5% of the standard deviation in
the original durations unexplained would require approximately
4500 parameters with the log transformation, but only about
3400 parameters with the piecewise linear transformation. This
entails a 25% reduction in the number of parameters to estimate.

Fig. 10 shows the distribution of errors between predicted
and actual durations, in terms of the number of corresponding
frames. It can be seen that approximately 80% of duration errors
involved a difference of one to two frames, either positive or
negative, while only about 1% of the errors involved differences
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Fig. 11. Fitted (o) and actual (+) fundamental frequency values and derived
model targets, for an utterance from Fig. 8.

greater than five frames either way. This implies that the vast
majority of predictions are in the vicinity of the typical threshold
for just noticeable difference (cf., e.g., [10]), with only a few
“howlers” occurring from time to time.

This improved modeling has implications for the voice
generation in a speech synthesizer, because it will generate a
greater quantity of longer and shorter phonemes than previous
approaches. Short phonemes are difficult to synthesize because
they are typically associated with undershoot of articulatory
targets [2]. Mere warping (in the time domain) of units that sound
appropriate with longer durations is likely to result in unnaturally
sudden spectral transitions. Similarly, the longer durations
produced by this model will require careful voice processing to
avoid unnaturally salient steady states. Consequently, we believe
that as duration models improve, there will be greater need for
articulatory approaches to voice generation (cf. [25]).

B. Pitch Modeling

For pitch modeling the evaluation criterion was taken to be the
mean absolute frequency deviation across each utterance con-
sidered. Note that this is different from usual criteria like the
root-mean-square (rms) error and the correlation () between
original and synthetic contours. While such measures have been
used in a number of intonation evaluations (e.g., [6]), and were
shown by Hermes [13] to be well motivated similarity metrics,
we believe the mean absolute frequency deviation may be even
better suited for determining how well the new pitch models
capture the qualities of the underlying data. This is because rms
and are both based on the norm, which tends to reduce
the effect of rare outliers. In pitch modeling, rare outliers can be
perceptually egregious, and it might therefore be beneficial to
avoid downweighting their influence.

Fig. 11 shows the result of gradient descent optimization on
one of the pitch contours shown in Fig. 8. The solid line interpo-
lates between the targets, and then undergoes causal smoothing
with a Hamming window. Fitted fundamental frequency values
are generated in 5-ms frames. In this example, the mean abso-
lute deviation between fitted and original values is about 1.9 Hz.

Over the entireReiterant Speechsubcorpus, this figure typically
varies between 2–3 Hz.

Fig. 11 illustrates several characteristics of the approach. One
is that most of the model error arises from the segmental pertur-
bations remaining in the EGG signal (see, for example, frames
50–90). This confirms that the residual from the fitted smooth
contours will provide good data for systematically modeling the
perturbations. Another is that the optimal smoothing window
(60 ms long) turns out to be considerably shorter than in prior
work (e.g., 180 ms in [27]). Consequently, the local accent tar-
gets bear more responsibility for generating the smooth curves.
For example, an extra target (at frame 98) was needed between
the high plateau at the start of (at frame 67) and the low
plateau corresponding to (at frame 118). This extra target be-
came part of the abstract characteristic shapes for all
accents. Finally, note that the first target (at frame 0) occurs
40 ms before the start of the utterance. The data showed that
when modeled this way, the pitch contour across unaccented ut-
terance-initial syllables could be modeled with one initial value
across the entire corpus. This holds regardless of whether it sub-
sequently rises to a tone or drops to a tone on the first ac-
cent, and regardless of the distance to that accent.

VII. CONCLUSION

The Victoria corpus collection effort has underscored
a number of interesting lessons. First, despite superficial
similarity, different criteria should be used for the design
of speech synthesis and speech recognition corpora. In the
latter, background noise and variability are desired, and lack
of coverage of rare cases is often of little consequence. In the
former, distortions, noise, and variability that characterize most
real-world conditions will result in poorer synthesis quality, and
coverage is necessary because most combinations of phonetic
and prosodic contexts are rare. Second, collecting such a
large speech synthesis corpus presents very real challenges.
Consistency of vocal effort, pitch range, voice quality, and
speaking rate across multiple months of recording sessions is
as crucial as it is difficult. It helped to have spoken examples of
the desired speaking style and intonational tunes available, and
to make frequent reference to them.

TheProsodic Contextsportion of the Victoria corpus was in-
strumental to uncover empirical evidence for the use of a piece-
wise linear transformation in the well-known sums-of-products
approach to duration modeling. Compared to the standard log
transformation, the piecewise linear function reduced the pro-
portion of the standard deviation left unexplained in the original
domain by about 15%. Alternatively, at a given operating point,
it reduced the number of parameters required by about 25% at
usual levels of complexity.

The Victoria corpus was also instrumental for pitch modeling.
The smooth and reliable contours extracted from the EGG sig-
nals of theReiterant Speechsubcorpus enabled the estimation
of more accurate characteristic shapes, as objectively illustrated
by a low mean absolute frequency deviation (between 2 and
3 Hz) between original and synthetic fundamental frequency
variations. This in turn supports a better (both more complete
and more realistic) model of pitch behavior. We are currently
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gathering large-scale subjective evidence to confirm that the
improved prosodic representation resulting from these models
leads to more natural-sounding synthetic speech.
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