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ABSTRACT
Bit errors are common in wireless networks, and techniques
for overcoming them traditionally consist of expensive re-
transmission (e.g. Automatic Repeat reQuest (ARQ)) or
expensive Forward Error Correction (FEC), both of which
are undesirable in resource-constrained wireless networks
such as wireless sensor networks (WSNs). In this paper,
we present TVA (Transmit-Verify-Acknowledge), a proto-
col that can correct errors without adding additional redun-
dancy to data packets. Instead, TVA corrects errors us-
ing the redundancy inherent in Cyclic Redundancy Checks
(CRCs). The ubiquity of CRCs has the advantage of allow-
ing TVA to be both backwards-compatible and backwards-
efficient with link-layer protocols such as IEEE 802.15.4. We
present a novel method of CRC error correction, which is
compact and computationally efficient, and is designed to
correct the most common error patterns observed in WSNs.
We demonstrate that TVA provides reliability effectively
equivalent to that of ARQ. We perform trace-driven sim-
ulations using data from sensor network deployments in dif-
ferent environments and analyze TVA’s performance at dif-
ferent message lengths. To demonstrate the practicality of
TVA, we implement it in TinyOS, and perform experiments
on MicaZ motes to evaluate TVA in the presence of 802.11
interference. We find that TVA improves over ARQ and
FEC-based protocols, using 31% less redundant communica-
tion and 30% less additional time to recover errored packets
compared to ARQ.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication; E.4
[Coding and Information Theory]: Error Control Codes

General Terms
Design, Experimentation, Measurement, Theory

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SenSys’13, November 11–15, 2013, Roma, Italy.
Copyright is held by the owner/author(s). Publication rights
licensed to ACM. ACM 978-1-4503-2027-6/13/11$15.00.
http://dx.doi.org/10.1145/2517351.2517371.

Keywords
Wireless, IEEE 802.15.4, Cyclic Redundancy Check (CRC),
Error Correction, ARQ, Performance Evaluation

1. INTRODUCTION
In wireless networks, physical obstructions and 802.11 in-

terference are two common causes of packet corruption in
the form of bit errors. Since reliability is paramount, Au-
tomatic Repeat reQuest (ARQ) is typically used to ensure
successful packet delivery in the face of errors. These ex-
pensive resends can cause a reduction in throughput and
energy efficiency, which is particularly critical in resource-
constrained networks such as sensor networks. To reduce
retransmissions, Forward Error Correction (FEC) has been
proposed [12, 21, 9], which adds additional upfront redun-
dancy to each packet, requiring more resources to compute
and more bandwidth to transmit. In high-error scenarios
the use of FEC is clearly desirable, but it adds unnecessary
redundancy in low-error scenarios. In this case, one would
ideally refrain from adding additional redundancy to packets
without errors, but when an error occurs, correct the packet
efficiently with a minimum of additional communication.

We introduce Transmit-Verify-Acknowledge (TVA), a new
link-layer protocol that reliably corrects a large percentage
of errors without requiring any part of the original message
to be resent or adding additional redundancy to data pack-
ets. TVA is backwards-compatible with 802.15.4, requires
no hardware modifications, and, in the absence of bit er-
rors, acts like a typical ARQ protocol. But for the most
commonly-occurring bit errors, TVA corrects the message
and uses only a small amount of additional communication
to verify the correction.

TVA is able to correct messages by exploiting the Cyclic
Redundancy Check (CRC), a code appended to almost all
modern network packets. The CRC is generally used solely
to determine if the message was received correctly. However,
we show that there is enough redundancy in this checksum to
correct a large percentage of bit errors that occur in practice.

To see how TVA works, consider the following Alice and
Bob scenario. Alice sends the original message over a wire-
less channel to Bob. During transmission, the message is
corrupted with a bit error (perhaps due to wireless inter-
ference, or physical obstructions). When Bob receives the
message, he first checks the CRC to determine if the mes-
sage is correct. Since it is not, Bob attempts to correct
the message using our novel CRC error correction procedure
(section 3.2). In certain cases when the packet corruption
is overwhelming, the error correction procedure may fail, in



which case Bob drops the packet and waits for a resend. If
the correction succeeds, Bob sends Alice a packet contain-
ing a short description of the received message (see details
in section 5). Alice then checks that the description matches
the original packet. In the rare event that the description
does not match, indicating that the corruption of the origi-
nal packet was too severe, Alice resends the original message.
Otherwise, Alice sends Bob a very short confirmation mes-
sage, and Bob then passes the corrected original message up
the stack.

TVA’s key contribution is a novel method of recovering
from bit errors that is practical for resourced-constrained
devices. This is different from theoretical work in error cor-
rection (e.g. LDPC [18]) which have guarantees about opti-
mizing channel usage but, unlike TVA, are not backwards-
compatible, and expensive to implement on devices with
severely constrained memory and computational abilities.
Other approaches such as Partial Packet Recovery (PPR)
[8], require “hints” from the radio hardware to achieve good
error correction ability, which, in contrast to TVA, requires
extensive modification to hardware and thus is unsuitable for
deployment in existing networks. Block-level retransmission
schemes such as Maranello [6] do no error correction at all
but rather require extra redundancy to locate the errored
data section and resend it, and thus generally have been
shown to be worse than FEC techniques [12]. In contrast,
TVA is able to locate errors without any additional redun-
dancy, allowing it to outperform both FEC and ARQ.

TVA has the following key features:

• TVA is backwards-efficient with 802.15.4 (see section
8.4). In particular, this means that energy will not be
wasted sending extra redundancy or special packets
unless the receiver can utilize them.

• TVA is highly efficient, both in memory consumption
and in CPU usage. This is in contrast to previous
memory-intensive methods of CRC error correction
[17]. See section 8.2.4 for more details on how we im-
plement the required buffering in a memory-efficient
fashion.

• TVA is effectively as reliable as ARQ even in high-
error situations, despite further exploiting the CRC
(see Section 5.3).

Since TVA is especially well-suited to WSNs, we have im-
plemented TVA on Crossbow MicaZ sensor motes, which
have only 4KB RAM and a 8MHz processor. We evaluated
TVA first on a trace-driven simulation using traces collected
by others, and then evaluate TVA on a sensor testbed. Our
results reveal the following:

• In simulation, TVA performs better in average code
rate and throughput than ARQ and FEC-based
schemes in a variety of environments.

• On high-error trace sets, TVA improves throughput by
as much as 3x over ARQ.

• In our MicaZ experiments, TVA tends to outper-
form both ARQ and FEC-based schemes in terms of
throughput and average code rate.

• In our MicaZ experiments, TVA uses an average of 31%
less redundant communication and 30% less additional
time to recover errored packets compared to ARQ.

The paper makes four main contributions:

• We present a novel method of CRC error correction
which is highly efficient in both memory and compu-
tation time,

• We identify the most common errors observed on our
hardware and show how our error correction method
can be tailored to correct them (though the technique
generalizes to many other types of error patterns),

• We show that one can use the CRC for error correction
without a loss of reliability by using a short, carefully
tailored confirmation exchange,

• We show that TVA is an attractive, practical choice
for low-error environments.

2. BACKGROUND AND RELATED WORK
We first discuss background of two areas with which the

reader may be unfamiliar, CRCs and Hybrid ARQ, and then
survey closely related work.

2.1 Cyclic Redundancy Checks (CRCs)
CRCs use binary polynomial division by a generator poly-

nomial G (of degree n) to detect errors. A good description
of CRC calculation can be found in [18]. One critical point
is that for an uncorrupted message (with appended CRC),
the CRC computed by the receiver will be zero.

2.2 HARQ (Hybrid ARQ)
Hybrid ARQ is an attempt to introduce Forward Error

Correction (FEC) to the ARQ protocol. In HARQ type
I, extra FEC bytes (using some error correction code) are
appended to each data packet. If corrupted data is received,
correction is attempted. If the correction succeeds, an ACK
is sent, otherwise the message is discarded [14]. HARQ is
a good point for comparison, because it robustly adds an
error correction scheme to ARQ. When comparing versions
of HARQ using different amounts of redundancy, we use the
notation HARQ-t, where t is the number of redundant bytes.

One popular FEC scheme that can be used with HARQ is
Reed-Solomon (RS) coding, which is particularly effective at
correcting burst errors. Any t redundant bytes of data can
correct all errors in t/2 bytes [10]. However, RS codes can
only detect t errored bytes [10], so for maximum reliability
(and for compatibility reasons) they must be usually com-
bined with a CRC. The CRC is then checked first, only if
it indicates corruption is the more expensive Reed-Solomon
decoding done.

2.3 Related Work
Related work falls into two areas: link-layer protocols that

attempt to improve wireless efficiency in the face of bit er-
rors, and previous work in CRC error correction.

2.3.1 Link-layer protocols for efficient error recov-
ery

There have been several investigations into using simple
FEC techniques to correct corrupted packets in WSNs, such
as linear block codes [9] or triple redundancy [21]. Although
these codes show some improvement over ARQ, they require
substantial redundancy for relatively little error correction
ability.



In [12], Liang et al. present TinyRS, a full-featured Reed-
Solomon library for TinyOS, which the authors claim is op-
timized to allow powerful Reed-Solomon error correction in
WSNs. They find that TinyRS can correct a high percentage
of errors due to wireless interference, and thus recommend it,
in combination with other techniques, to improve through-
put in WSNs. As such, we compare ourselves to TinyRS in
our experiments (sections 8.3 and 9).

LDPC [18] is an error correction code which is gaining
popularity due to its strong detection and correction capa-
bilities, and as such does not necessarily need an additional
detection code (such as a CRC) to guarantee reliability, even
for relatively short LDPC codes. Choi and Moon in [2] eval-
uated the practicality of LDPC codes in WSNs. They found
that, despite using the latest LDPC optimizations, imple-
menting LDPC on MicaZ motes required one to increase
the RAM of the motes by 800%.

Partial Packet Recovery (PPR), as presented in [8], is a
scheme with a similar goal, to reduce retransmission without
adding additional redundancy to data packets. PPR relies
on exploiting the hardware’s demodulation of the signal to
get confidence estimates for individual pieces of the signal,
and request retransmission of only the pieces that are likely
in error. However, PPR requires significant hardware mod-
ification, and as such is not suitable for current use.

Maranello [6] is a 802.11 link layer protocol which, like
TVA, does not require hardware modification or additional
upfront redundancy. Unlike TVA, however, Maranello does
not use the CRC to locate errors, so it must send back very
long NACK messages describing the received packet in or-
der for the sender to determine which corrupted blocks to
resend. The size of the NACK message is a major draw-
back to Maranello, and follow-up studies [5] showed that
for this reason Maranello performs worse than block-based
ARQ schemes (which add significant amounts of upfront re-
dundancy). In turn, studies indicate that FEC such as Reed-
Solomon is preferable to block-based ARQ schemes in WSNs
[12], and hence we feel these FEC-based protocols are the
best point of comparison for TVA.

2.3.2 CRC error correction
Relatively little work has been done in using CRCs for the

correction of bit errors. In fact, it is a widespread miscon-
ception that CRCs are capable only of detection, and not
correction. For example, a 2009 article from IEEE Trans-
actions on Computers [1] writes, “However, since the CRC
codes cannot correct errors, a retransmission is needed when
the corruption has occurred in the data. The inability to cor-
rect errors sometimes becomes a critical problem when the
data integrity is essential but the retransmission is impossi-
ble or very costly.” While basic theory textbooks such as [18]
note that CRCs are linear codes, and thus theoretically ca-
pable of error correction, investigations into the practicality
of exploiting this capability have been limited thus far.

McDaniel’s work on single-bit error correction [17] gives
a preliminary analysis of using CRCs to correct single bit
errors. In contrast to our flexible and memory-efficient ap-
proach, he uses a memory-intensive table-based approach
over a fixed message length, and claims that CRC error cor-
rection is impractical with standard generator polynomials.
We describe how to correct complex errors, even with stan-
dard polynomials.

ATM (Asynchronous Transfer Mode) is a commercial pro-

tocol that uses CRC error correction in practice [13]. How-
ever, it uses an 8-bit CRC to correct only single-bit errors
over a fixed header length, unlike our scheme which is con-
cerned with correcting multiple-bit errors over all message
data, including the variable-length payload.

Our preliminary investigations of CRC error correction,
[16] and [15], provide some evidence that CRC error cor-
rection can be useful in wireless networks. These theoret-
ical papers show that standard CRC generator polynomi-
als are capable of correcting not only single-bit errors, but
bursts and double-bit errors as well, and analyze the effect
the choice of CRC polynomial has on correction capability
across messages of varying lengths. However, this early work
provides no evaluation of CRC error correction in practice,
assumes that errors are distributed as bursts, makes unre-
alistic assumptions about hardware CRC calculation (see
section 8.2.1), and presents a memory-intensive correction
algorithm unsuitable for sensor networks.

3. THE THEORY OF CRC ERROR COR-
RECTION

Traditionally, CRC error correction has been limited to
correcting only a single bit of data. Limited work [15] has
also considered burst errors. Bursts and bits, however, are
just special cases of error patterns. For our purposes an
error pattern is defined as a set of index lists (called error
sequences), where each index list corresponds to the indices
of the bit errors in a single erroneous message. In order to
have a finite set of error sequences, we require a maximum
message length X. Below we describe error correction in this
more general setting.

3.1 Tabular Method

3.1.1 Theoretical Justification
CRCs are a linear code [18]. This means that for any

ma,mb, CRC(ma) + CRC(mb) = CRC(ma + mb). Since
CRCs operate over a binary finite field, addition is equiva-
lent to the binary XOR operation. This means CRC(ma)⊕
CRC(e) = CRC(ma ⊕ e), where e is the error pattern.
Now let m1 be a correct message, so it should have a valid
CRC attached and thus we know (see section 2.1) that
CRC(m1) = 0. So CRC(m1 ⊕ e) = CRC(m1)⊕CRC(e) =
CRC(e). Thus, if we know CRC(ei) for all ei, then given
the CRC of a corrupted message we can search through the
error pattern CRCs for a matching CRC, knowing that the
CRC of the true error pattern e will match.

If we can find an error sequence e′ such that CRC(e′) =
CRC(e), XORing the error sequence it represents into the
message will cause the resulting message CRC to be 0. To
see why, if we assume m2 = m1 ⊕ e then CRC(m2) =
CRC(e) = CRC(e′), and

CRC(m2 ⊕ e′) = CRC(m2)⊕ CRC(e′) = 0

This means, if e′ 6= e, the correction procedure corrupts the
message further, and we will be unable to detect the corrup-
tion by using the CRC. Section 5 addresses this problem.

3.1.2 Description
All previous work on CRC error correction that we know

of has employed the tabular method [17, 13, 15]. The first
step in this method is to precompute an error correction



table T . In order to construct T , one must in effect simulate
the error pattern P and record a mapping of the resulting
CRC to the original erroneous bits. Let our maximum data
length be X < 2n − n. We then simulate all possible error
sequences of our pattern P over messages of length X + n,
creating i error sequences zi which indicate errored bits by
a 1 and non-errored bits by a 0. We then fill our table T
such that T [CRCG(zi)] = ai, where ai is an error sequence
identifier1. If no two mutations of Z have the same CRC,
meaning CRCG is injective for every zi, then G is called a
valid polynomial for error correction. This means given any
message M ′ (consisting of an original message M of size X
with an n-bit checksum C1 appended), one can correct any
of the error sequences contained in the pattern P.

To correct errors using the tabular method, we must nor-
mally ensure that the sender has padded the message M to
the maximum message length X when computing C1. Note
that this padding only occurs in the CRC calculation, but
is not part of the sent message. Once given the CRC result,
we look it up in the table. If the result is not present in the
table or the indices of the supposed errors are greater than
the length of M, we know that we cannot correct the data.
Otherwise, we correct the errors indicated by the table.

This method is undesirable for memory-constrained sit-
uations because it requires a large table with an entry for
every possible error sequence. However, this method is still
useful for determining polynomial validity.

3.2 Cyclic Method

3.2.1 Theoretical Justification
We can exploit the following property of cyclic codes

(shown in [18]) to improve the memory requirement. If s(x)
is a CRC polynomial, g(x) is the generator polynomial, and
m(x) is the message polynomial, then by the definition of
binary polynomial division we know m(x) = q(x)g(x)+s(x).
Let k be the length (aka degree) of m(x). Then it can be
shown [18] that if one cyclically shifts m(x) i times (modulo
xk − 1) to compute m′(x), the new remainder (aka CRC) of
m′(x) when divided by g(x) will be equal to the cyclically
shifting s(x) i times modulo g(x). To shift m(x) modulo
xk − 1 is a simple operation: If m(x) = a+ bx+ cx2 + dx3,
then m′(x) = d+ ax+ bx2 + cx3. Or in binary, a wrapping
right shift.

To cyclically shift the CRC s(x) is a bit more complicated:
one must multiply by x, and then take the remainder of
xs(x) when divided by g(x). However, this is equivalent
to the procedure for computing the CRC of a stream of
data when we have a zero bit as input [18]: we shift the
input register (a multiplication by x) and add g(x) if the
rightmost bit was one (division by g(x)). Since CRCs are
a cyclic code, this means that we can perform a wrapping
right shift of the message and, instead of recalculating a new
CRC, simply cyclically shift it one iteration.

From section 3.1.1, we know that we can take an error
sequence and match the CRC with the message if the errors
are in the same place. However, now we can extend this: If
the errors are in any cyclically shifted location, all it takes
is a few cyclic shifts of the message CRC and it will match
with the CRC of the error sequence. Also, we only need to
shift the CRC and check at most L times, where L is the
length of M . Assuming we place the error sequences in the

1Sometimes i itself is used for this purpose.

table shifted as far right as possible, it is easy to recover the
bit locations: If we have shifted i times, the offset is i, since
the errored bits have not had a chance to “wrap” yet.

Finally, we must address padding. In the tabular method
the transmitter had to pad the data when computing the
CRC, but the cyclic method does not require it. If the trans-
mitter had padded the data, we can assume that they had
padded with rightmost zero bits, which would be equivalent
to cyclically shifting the CRC. So all that is required is for
the receiver to cyclically shift the CRC extra times, shifting
the index past the invisible padding bits and onto the actual
data.

3.2.2 Description
In order to apply this method, the error pattern must

be formulated cyclically. This means declaring a set of
subpatterns, that we will call kernels2 which have fixed
length, and a stride. Then the pattern contains all sequences
formed by shifting that kernel through the data at a spec-
ified stride. For example, if we have kernels (101,111) and
stride 2 then the error sequences will look like {1010000,
1110000, 0010100, 0011100, . . . } . Note that all patterns
can be expressed in this format by placing each sequence
in the kernel set. However, a small number of kernels is
desirable to conserve space.

Similar to the tabular method, all kernels are stored in a
table. Then, when we have a message we want to correct
(with a nonzero CRC) of length L, a maximum message
length X, and a stride S, we perform X −L different cyclic
shifts of the CRC with result R. As before, a cyclic shift is
the same as a bit-by-bit CRC computation with input bit
0. Then we compare the current R with the kernel set. If
R maps to pattern P , we know P occurred in the data at
offset 0. If not, we perform S more shifts and lookup the
CRC again, and if it matches we know the offset is S and can
correct the data. We continue this process until the offset
is greater than the data length, at which point we know the
error is not correctable.

This method uses much less memory, for example it uses
64 bytes to correct 4-bit-bursts in 40 bytes of data, while the
tabular method uses 10KB. This improvement comes at the
cost of extra computation equivalent to computing a single
CRC of packet length X using the bit-by-bit method. It is
possible to optimize further, see section 8.2.2.

3.3 Maximum Message Size
The choice of X greatly affects the performance of both

algorithms. Too high of a limit causes too many additional
error sequences, lowering the chances of creating a collision-
free table, which in turn limits available generator polynomi-
als and correctable error patterns. Also, a high message size
can increase the amount of computation needed by the error
correction algorithm, whether through additional padding in
the tabular method or additional shifts in the cyclic method.

4. OPTIMIZING CRC ERROR CORREC-
TION FOR A GIVEN ENVIRONMENT

In general, the first step to deploying an error correction
system is to determine what type of errors are induced by the
hardware and the environment. To do this, we performed

2These are traditionally called generators, but we wanted to
avoid confusion with “generator polynomials”.



a thorough analysis of an error trace containing data trans-
mitted wirelessly by MicaZ motes in a noisy environment
(these traces are described fully in section 6, where they are
used in our simulations). Our findings indicate that single
4-bit bursts aligned at the half-byte boundary (which we
call half-octet errors) are the most common type of error,
accounting for at least 50%3 of all errors in our trace.

The reason for this is due to the MicaZ’s radio, the Chip-
con CC2420, and how it translates chip sequences to bits.
According to [22], every 4 bits of data are mapped by radio
hardware to a 32-bit chip sequence before they are trans-
mitted, and back again when they are received. If the chip
sequence does not match one in the mapping, the closest
chip sequence is used. Thus, if a burst error occurs in trans-
mission, it is highly likely to be contained in a single 32-bit
chip sequence, and map to a half-octet error, regardless of
the original length of the burst. If there is only a small
amount of noise (e.g. arising from 802.11 interference) in
the environment, the hardware will usually be able to de-
code the correct 4-bit sequence, but sometimes it will not,
resulting in occasional half-octet errors.

Although the traces we used to identify these errors were
taken from the MicaZ, since we have traced the cause back
to the hardware, the same errors should be common in other
devices using the CC2420, such as the Crossbow TelosB, Sun
SPOT, and Intel iMote24. Also, similar radios such as the
CC2520 have the same symbol-to-chip mapping and thus
also tend towards half-octets [23]. Finally, even on very dif-
ferent hardware one is likely to find well-defined and peculiar
error patterns. For example, in [3] researchers observe that
the pattern 10010001 occurs quite frequently due to an arti-
fact of their radio hardware. Whether the identified pattern
is half-octets, short bursts, or 10010001, identifying these
patterns leads to information theoretic gains. This is be-
cause if the entropy of the possible error sequences is low,
one should need fewer bits of redundancy to correct them,
no matter the length of the error. However, schemes such as
Reed-Solomon lack the ability to adapt to any arbitrary er-
ror pattern, because they aim to correct all errors of a given
byte length. Our scheme, on the other hand, is much more
flexible and can easily adapt to the exact error pattern. Be-
cause of this, we were able to focus CRC error correction
on correcting half-octet errors in our simulations and exper-
iments. Since the standard CRC-CCITT generator polyno-
mial is not valid for error correction beyond 5-bit-bursts, we
restrict ourselves to single half-octet errors. Focusing on this
small class of errors allows us to decrease our probability of
miscorrecting the data while correcting a high percentage of
the observed errors.

5. TVA
Reliability is critical for most networks, and hence CRC

error correction seems dangerous: Since we use some of the
entropy in the CRC to correct a class of errors (such as half-
octet errors), according to information theory we cannot re-
tain the same error detection power. So if, after running
the error correction procedure, we simply pass the resulting

3The rest of byte errors accounted for about 20%, 2-byte
errors for 15%, 3-byte errors for 5%.
4In fact, together with our colleague Mark Grossman we
have verified this in the case of the Java-programmable Sun
SPOT.

packet up the stack, we risk passing a packet that is still
corrupted. Since we can no longer use the CRC itself to ver-
ify that the packet is correct (as explained in section 3.1.1),
the only way to be certain the message is indeed correct is
to contact the sender.

So in TVA, after correcting a message, the receiver sends
a verification message to the sender containing a description
of the original packet. The sender checks the description
against its records and responds with either a resend if the
description is incorrect, or a very short confirmation message
if the packet is correct. The choice of packet description
for the verification message is critical: it needs to be very
short and easy to compute, yet it needs to provide very high
confidence that if the description matches, the corrupted
packet was successfully corrected.

TVA uses a 16-bit CRC for this message description be-
cause it is highly efficient to compute and can detect many
errors with a short code. However, now one must choose the
best generator polynomial to use, as a poor generator poly-
nomial will result in poor error detection ability and thus
poor reliability. Re-using the standard 802.15.4 polynomial
is not an option, since we have already used it for error cor-
rection and thus it will always fail to detect mistakes in the
correction procedure, as explained in section 3.1.1. Instead,
we must specify the desired properties of the new polyno-
mial, and then efficiently search the space of polynomials to
find the one with the best error detection properties.

5.1 Generator Polynomial Properties
The first observation is that since it is not necessary to

protect the integrity of the original CRC, we can exclude it
from the checksum calculation.

Label the original generator polynomial G, and the poten-
tial generator polynomial P . A message M is transmitted
with CRC r0, and arrives at the receiver corrupted with error
pattern e1. The receiver corrects this message by XORing
in error pattern e2, based on the table mapping. We assume
e1 6= e2, otherwise the correction has succeeded. By the lin-
ear properties of CRCs explained in section 3.1.1, we know
the new CRC of this corrected message is zero. Thus where
q0 is a quotient,

(xnM ⊕ r0)⊕ e1 ⊕ e2 = q0G (1)

In order for TVA to fail, the CRC computed over the second
generator polynomial must match. Let e′i be the quotient of
ei
xn . So:

CRCP (M ⊕ e′1 ⊕ e′2) = CRCP (M) (2)

Since the first term represents the corrupted message with
the last n bits removed. By the linearity of CRCs:

CRCP (M)⊕ CRCP (e′1 ⊕ e′2) = CRCP (M) (3)

CRCP (e′1 ⊕ e′2) = 0 (4)

In other words, the key property of the polynomial P is
that it does not fail to detect a message error consisting
of a common channel error XOR’d with a correction error
(in our case a single half-octet), in the cases for which the
original CRC G detects but does not correct the original
channel error pattern. Note that the optimal P is probably
not a standard polynomial, since standard polynomials were
created to detect burst errors, not this special class of error
pattern.



5.2 Searching for Polynomials
Now that we have defined the desired properties (we call

a polynomial satisfying these properties for some channel
pattern TVA-valid), we still have to find the generator poly-
nomials that satisfy these properties over the most inclusive
set of channel errors. While simple properties of polynomials
can be shown mathematically, more complicated properties
must be evaluated empirically [11]. To do so, one must de-
fine what error patterns one wishes to guarantee that they
will avoid. Because from section 4 we know errors occur
in half-octets, we consider two error patterns: k-half-octets
and k-half-octet bursts. We are interested in TVA-validity
for maximum message sizes of 41 (TinyOS’s maximum mes-
sage size) up to 127 (802.15.4’s maximum message size).

Searching through all polynomials for a given message size
is computationally intensive, and can take up to a week for
a single message size on commodity hardware. As such, we
would like to show that polynomials which are not TVA-
valid at a smaller size also are not TVA-valid at all larger
sizes, given the same channel error pattern. If we show this,
then if a polynomial satisfies our criteria at a given size, we
know it also does at smaller message sizes. Similarly, if a
polynomial is not TVA-valid at a given message size, we do
not have to retest it at larger sizes.

5.2.1 Proof of monotonically diminishing TVA-valid
polynomial sets

To prove this property, we need to show that if P causes
TVA failures for a message M , then it causes TVA failures
for xM as well. First we show that the original CRC still de-
tects the error (so correction can proceed), meaning CRCG

of the corrupted xM is not 0.
We will actually show something stronger, so that we

may reuse the proof. If CRCG(mA) 6= CRCG(mB), then
CRCG(xmA) 6= CRCG(xmB). If mA is taken to be the cor-
rupted message (xnM ⊕ r0)⊕ e1, and mB is taken to be 0,
then what we want to prove becomes a special case of this
more general property.

So, we will show that if and only if G is an odd polynomial,

CRCG(mA) 6= CRCG(mB)

=⇒ CRCG(xmA) 6= CRCG(xmB) (5)

Since the standard CRC-16-CCITT (and most other com-
monly used generator polynomials) are odd (x0 coefficient is
1), this will demonstrate the required property. So we begin
with the forward direction, assuming G is odd:

mA = qAG+ rA,mB = qBG+ rB , rA 6= rB (6)
mA

G
= qA +

rA
G
,
mB

G
= qB +

rB
G

(7)

So, for a contradiction, the remainder of
rA
G

, r′A must equal

the remainder of
rB
G

, r′B . We split into three cases based on

the degree of rA and rB . It should be clear that since rA
and rB are remainders from a division with G, their degree
must be less than the degree of G.

Case 1:

deg(rA) < deg(G)− 1, deg(rB) < deg(G)− 1 so, (8)

deg(xrA) < deg(G), deg(xrB) < deg(G) (9)
xrA
G

= xrA = r′A,
xrB
G

= xrB = r′B (10)

But rA 6= rB , so xrA 6= xrB and thus r′A 6= r′B , a contra-
diction.

Case 2:

deg(rA) = deg(G)− 1, deg(rB) = deg(G)− 1 (11)

In this case, deg(xrA) = deg(G), deg(xrB) = deg(G)
(12)

So xrA = G+ r′A, xrB = G+ r′B (13)

But for a contradiction we assumed r′A = r′B , so by equa-
tion (13) xrB = xrA, so rB = rA, a contradiction.

Case 3: Without loss of generality,

deg(rA) < deg(G)− 1, deg(rB) = deg(G)− 1 (14)

So xrB =G+ r′B (15)

xrB −G =r′B (16)
xrA
G

=xrA = r′A (17)

By our assumption that r′A = r′B :

xrA = xrB −G (18)

If we examine the constant (x0) term on the left side of the
equation, it is zero. The only way for it to be zero on the
right side of the equation is if G has a zero constant term.
But G is odd, a contradiction.

Now for the backward direction of (5): No even poly-
nomial G can satisfy the property: If CRCG(mA) 6=
CRCG(mB), then CRCG(xmA) 6= CRCG(xmB) for all mes-
sages mA, mB .

Let

mA = G
x
,mB = 0 (19)

Since G is even, G
x

is a polynomial without remainder, so
mA is a valid bit sequence. CRCG(mB) = 0, and since
deg(G

x
) < deg(G), CRCG(mA) = G

x
, so mA and mB satisfy

the antecedent.
xmB = 0, so CRCG(xmB) = 0. xmA = xG

x
= G, and

thus CRCG(xmA) = 0 = CRCG(xmB).
Next we must show that the correction will proceed with

the payload xM , namely that it will map CRCG(xe1) =
CRCG(xe2). Since the table required CRCG(e1) =
CRCG(e2), it suffices to show a more general property, that:

For all G, If CRCG(mA) = c = CRCG(mB), then

CRCG(xmA) = CRCG(xmB) (20)

mA = qAG+ c, mB = qBG+ c (21)

xmA = xqAG+ xc, mB = xqBG+ xc (22)
xmA

G
= xqA +

xc

G
,

xmB

G
= xqB +

xc

G
(23)

Hence the remainder of both messages is the remainder of
xc
G

, so they are equivalent.
So the correction table will still map xe1 to xe2. Finally,

we want to show that the CRC taken with P will still fail
to detect the error (refer to (4)), or:

CRCP

(
x
(
e′1 ⊕ e′2

))
= 0 (24)

This follows from the property shown in (20), letting mA =
e′1 ⊕ e′2, and mB = 0.
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Figure 1: Polynomials that cause no TVA failures
on up to five bursts of half-octet errors (light line)
or no TVA failures on up to three half-octet errors
(darker line).

5.2.2 Retesting error sequences
Another optimization question is, must we retest all error

sequences for each new message size, or, if no TVA errors
were found in a shorter message size s, can we ignore those
sequences in which the errored bits only occur within s? We
reason through this property below:

We need to show if any message M does not have a CRCP

collision in the final step, xM will also have no collision. We
can apply the properties shown in (20) and (5) to show that
for standard G, xM passes the CRC check if and only if the
check succeeded for M . Then, we apply our proof of (5)
and (20) to show that for standard G, xM will cause a table
mapping to xe2 if and only if M caused a table mapping to
e2. Now we wish to claim that, assuming CRCP (e′1 ⊕ e′2) 6=
0, CRCP (x(e′1⊕e′2)) 6= 0. But (19) shows that if e′1⊕e′2 = G

x
,

this does not hold for even P . Hence, if we want to consider
even choices of P , using this optimization is not advised.

5.2.3 Polynomial Search Results
We found a large percentage of TVA-valid polynomials

at 127 bytes for 2 half-octets and 4 half-octet bursts, but
none even at 40 bytes for 4 half-octets or 6 half-octet bursts.
Hence we set out to map out the space of TVA-valid poly-
nomials at 3 half-octets and 5 half-octet bursts.

Using the first optimization and parallelizing the compu-
tation over several cores, we were able to search through the
space and create the graphs shown in Figure 1. The results
show that at 41 bytes, many polynomials have no failures for
all three half-octet errors anywhere in the data, and many
that have no failures for bursts of up to 5 half-octets5. There
are no more of the former type at message sizes greater than
68, but a few of the latter type remain up to 127 bytes.

5.3 Evaluating TVA on a channel model
This search allows us to find the polynomials with the

strongest TVA detection power. But it remains to be shown
that the detection power of even the best polynomials allows
TVA to reach the standard of reliability set by ARQ. Due to

5We require no failures for 2 half-octet errors as well.
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Figure 2: Relative reliability of TVA compared to
CRC on 41-byte messages, using the TVA polyno-
mial Q, and evaluated across channel parameters.
For each setting of the parameters, we simulated
TVA over 5× 108 messages.

Good Bad
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pburst

Figure 3: The Gilbert Elliot channel model. This is
used only for determining the reliability of TVA in
different channel conditions.

the large quantity of data needed for ARQ to fail to detect an
error, evaluating this property in error traces or experiments
is not feasible. As such, we evaluate this property using the
Gilbert-Elliot channel model [4], which is a very popular
two-state Markov model (Figure 3). However, this model
does not accurately capture the tendency toward half-octet
errors. As such, we modify the model so that the bad state
simply outputs a random half-octet, which is a reasonable
approximation of what occurs on CC2420 hardware when
there are several errored bits in the chip sequence.

We vary the transition probabilities perror and pburst to
inspire confidence in the reliability of TVA across wireless
environments. In Figures 2 and 4 we present a few simula-
tion results, using the

Q = x16+x15+x14+x11+x6+x5+x4+x3+x2+x+1 (25)

polynomial (0xC87F in hex), which we found to have excep-
tional reliability guarantees6, able to detect all TVA mis-

6To pick this polynomial, we used the data displayed in Fig-
ure 1 to determine the maximum data length where there
were remaining polynomials that could detect all 3 half-
octets and 5 half-octet-bursts. That maximum length was
63, with only two polynomials, one of which was 0xC87F.
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messages.

takes with 3 half-octet errors on messages of length up to
63, and up to 5 half-octet bursts on messages of length up
to 70.

As shown in the heatmaps (Figures 2 and 4), the error
rate is much lower (roughly 1/10) of that of the original
CRC failing. While this obviously does not mean TVA has
a lower probability of failure than ARQ (the CRC can fail in
TVA as well), it means that TVA has a negligible increase
in the error rate compared to ARQ.

6. SIMULATION SETUP

6.1 Traces Used
To evaluate the performance and demonstrate the versa-

tility of our scheme, we decided on a trace-driven evaluation
methodology, using WSN traces collected by others. We
found a suitable suite of traces on the CRAWDAD (Commu-
nity Resource for Archiving Wireless Data At Dartmouth)
database. The trace was collected by Adnan Iqbal, Khurram
Shahzad and colleagues [7] at the NUST school of Electri-
cal Engineering and Computer Science, Rawapalindi. Iqbal
et al. selected the Crossbow MicaZ sensor motes running
TinyOS and using the 802.15.4 protocol. They placed a sin-
gle sender mote at various locations while keeping a base
station in a fixed position. The sender mote transmitted
31-byte frames, which include 11 header bytes and 20 data
bytes, at a rate of 10 frames per second. Iqbal et al. col-
lected 4 trace sets representing 4 highly diverse locations
(PhD Lab, Outer Room, etc.) for the sender mote, holding
the base station in a fixed position. Each set contains 6-8
different trials, each containing an average of 31,000 frames.

6.2 Simulation details
The trace data had some limitations. First, it contained

message headers, some of which were corrupted, but there
was no way to tell what the correct values of those headers
should be. Second, there was no CRC recorded. To over-
come these limitations and to allow us to corrupt additional
bytes sent, we transformed the recorded packets into a steam
of bit errors. To do this, we recorded the index of each cor-
rupted bit in the payload. Then, when we simulate sending a
message, we XOR the next bits of the stream with the mes-
sage, thus replaying the errors. We constructed a packet
of 31 bytes with an 11-byte header and a fixed payload,
similar to the original data. We also generated different se-
quence numbers to use in the header. To simulate this fairly,
each protocol sees the same errors in the initial data packet.
We evaluated these metrics over two popular packet sizes:
TinyOS’s maximum packet size of 41 bytes and 802.15.4’s
maximum packet size of 127 bytes.

We measure the simulated average code rate (defined as
data bytes successfully received over the total bytes sent),
which is a more theoretical metric, and simulated through-
put and energy consumption, which are more practical mea-
sures. With regard to energy consumption, reports such as
[24] suggest that transmission and reception of data are both
power-intensive operations, but each take about the same
power on hardware similar to the CC2420. So this indicates
that the predominant factor affecting energy consumption is
how long the process of packet transmission, reception, and
acknowledgment takes before the radio can be turned off.
Thus, to maximize both throughput and energy efficiency
the goal is to determine how much time each protocol takes,
given the same amount of data to transmit.

Estimates for our timing simulation are taken from our
investigations into TinyOS. In our simulation, every protocol
takes a very short round trip time (ξ = 10 ms) to successfully
send a message and receive a response, but in the case of a
retransmission the waiting time is longer (γ = 100 ms), since
the link layers try to backoff to overcome the perceived noise.

We simulate TVA using the polynomial specified in equa-
tion 25 and target it to correct single half-octet errors (sec-
tion 4). While the implementation uses a complex buffering
scheme (see section 8.2.4), we simplified this slightly for the
purpose of the simulation. The sender takes only RTT to re-
spond with an TVA-ACK message, so we estimate the time
of a successful TVA exchange at 2ξ. If the TVA-2 message
is corrupted, we wait for a relatively short period of time be-
fore resending, about 50 ms, in order to attempt to contact
the transmitter before a message is resent. While in our ac-
tual implementation (see section 8.2.4) the receiver gives up
sending TVA-2 eventually and can accept a response to any
message, here we are pessimistic and assume the sender can
only respond to the first two resent TVA-2 messages, but the
receiver keeps sending TVA-2 messages afterwards. Lastly,
we do not simulate the limit on TVA-2 buffers, because we
found this limit was hit rarely in practice.

Finally, since our goal was simply to get a record of data
sent, we saw no need to fully simulate the HARQ proto-
col. We simply calculated the number of additional bytes
required for every packet and counted the number of pack-
ets that had uncorrectable errors (based on the theoretical
error correction properties, see section 2.2).

7. SIMULATION RESULTS

7.1 Analysis of Simulation Results
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Figure 7: Average code rate with 127 bytes of data.

Figures 5-8 show the simulation results, averaged over all
the traces in a given environment. These are averaged over
6-8 trials in each environment, and due to small changes in
the configuration between trials, the PER can vary signifi-
cantly across trials even in a single environment. As such,
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Figure 8: Throughput for 127 bytes of data.

below we attempt to give a better understanding of the vari-
ance in results across individual trace sets.

7.1.1 Error Correction Reliability
TVA, ARQ and HARQ pass no errored packets to the

application layer in all of our simulations. To get some sense
of how frequently residual errors would be expected if we
did not do the TVA confirmation, we also tested a protocol
which assumed that if CRC error correction succeeded then
the message was correct. We found that this protocol caused
correction failures 0.36% of the time in error cases at 41
bytes, and 1.04% at 127 bytes. In most systems even a 0.36%
times PER corrupt packet rate is unacceptable, justifying
the reliability component of TVA.

7.1.2 Performance Comparison
TVA always performs better, both in terms of average

code rate and in terms of throughput, than the commonly
used ARQ protocol, no matter the message length. At
41 bytes, TVA does on average 62% better in throughput
than ARQ, in some high-error traces more than tripling its
throughput. Even at 127 bytes it does better in throughput
by an average of 21% and a maximum of 68%. In fact, TVA
only has the potential to perform worse than ARQ if we hy-
pothesize a large number of correction failures, which would
require sending both TVA verification messages and resends.
However, as we have observed in 7.1.1, the empirically-
estimated probability of these failures is only 1%, so this
helps explain TVA’s dominance over ARQ.

TVA also fares well against HARQ, almost always per-
forming better in the 41-byte case (except in 12% of cases,
which have very high PER), improving by up to 38% in
throughput, and 17% in average code rate. In the 127-byte
case, we still see a maximum throughput improvement over
HARQ of 28%, although in about 25% of high error (>20%
PER) rate cases TVA does worse than HARQ in throughput.
This is due to the fact that with extremely long messages
and high error rate, TVA cannot correct enough errors to
beat the performance of a more powerful coding scheme. As
shown in the summary graphs (Figures 5-8), TVA shows
strong performance in both throughput and code rate when
averaging over a variety of trials in the same environment.
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Figure 9: The format for HARQ message. The CRC
acts as an inner code, while the Reed Solomon code
acts as an outer code.

8. IMPLEMENTATION
A trace-driven simulation, while useful, is only one com-

ponent of a rigorous evaluation of our system. An imple-
mentation on actual sensor hardware is required to fully
demonstrate the effectiveness of our scheme. We chose to
implement our protocols on Crossbow MicaZ motes running
TinyOS version 2.1.0. We chose this platform because of its
popularity in the WSN community. These devices are highly
memory constrained, containing only 4K of RAM and 128K
of ROM, and possess a 8MHz AVR ATmega128 processor.
They are equipped with the CC2420 radio, which is designed
to be compatible with the IEEE 802.15.4 standard. This ra-
dio is used by many other popular sensor motes, from the
Crossbow TelosB to the Intel iMote2 to the Sun SPOT.

8.1 HARQ
In order to ensure that our implementation of Reed-

Solomon was as efficient as possible, we use the TinyRS
library, a Reed Solomon library optimized for sensor motes,
developed by Liang et. al. [12]. However, the version of the
library generously provided by Liang used so much RAM
that it could not be installed on the MicaZ motes (see Fig-
ure 12). We thus further optimized7 TinyRS to reduce its
RAM consumption, and used the optimized version in our
experiments.

HARQ type I operates similarly to ARQ, however the
packet format is quite different. As seen in Figure 9, the
CRC still is computed over the payload and attached to its
end, as an inner code. But the FEC code is then used as
an outer code, which wraps both the payload and the CRC.
When a packet is received, the CRC is checked first, which
avoids the high decoding time in the case of an uncorrupted
packet. If the CRC check fails, the decoding process is done,
at which point the CRC is checked again to ensure that the
decoding completed successfully.

8.2 TVA
We implement a version of TVA that uses the polynomial

specified in equation 25 and targeted to correct single half-
octet errors (section 4). Here we describe some challenges
implementing TVA on actual resource-constrained motes.

8.2.1 Hardware Calculated CRCs
In theory, CRCs are calculated as described in section

2.1. However, modern hardware such as the CC2420 does
not compute CRCs via standard binary polynomial division.
It turns out that when implementing the algorithm in hard-
ware, the bytes of the data are reversed before the CRC is
taken. In other words, a byte with bits 01234567 turns into
76543210.

This difference cannot be ignored as an implementation
detail because it changes the way error patterns are de-
fined. For example, the error sequence 0000001111000000
crosses a byte boundary, and so is equivalent to an error of
1100000000000011 in the transmitted data. Since the CRCs

7Optimizations included moving data from RAM to ROM
and reducing the data width of certain variables.

of these messages are different, the modification has a po-
tential to cause a collision with other entries in the table,
leading to differences in polynomial validity for error correc-
tion. For example, the standard 802.15.4 CRC-16-CCITT
polynomial is valid, using the hardware calculation, for 4-
bit-bursts over 48-byte messages, while using the standard
calculation it is valid for over 128 message bytes. Fortu-
nately, half-octet errors do not have this issue, as they do
not cross byte boundaries, and thus reversing the bytes of a
half-octet error yields another half-octet error. Hence, this
method does not affect any theoretical CRC properties for
half-octet errors, though it may for other error patterns. For
backwards-compatibility reasons, TVA uses the same CRC
calculation as the radio hardware, but since we focus on cor-
recting single half-octet errors, our approach is still valid for
over 128 message bytes.

8.2.2 Efficient Table Lookup
While in section 3.2 we showed how a CRC correction

table can be easily optimized to save space, a näıve imple-
mentation of the table would increase compute time signif-
icantly, because, for the case of half-octet errors, all entries
of the table must be considered after every 4 bits of data
are consumed. Here we discuss how to optimize the table
to fit memory requirements of the motes, namely that RAM
is much more expensive than ROM, while attempting to re-
duce the computation time as much as possible.

The first optimization step is to make the correction table
compatible with the byte-by-byte efficient CRC computation
[18], which can be done by considering the stride to be 8 bits
instead of 4, which doubles the size of our table from 15 to
31 CRCs. However, placing this table into RAM (for quick
access) would take too much memory. Instead we must put
it in ROM, but searching through all 31 entries for each byte
of the received message takes significant computation time.
To optimize further for time, we consider a two-tiered table
approach: The first tier is indexed by the low-order byte
of the CRC, it has 256 entries each one byte long. If the
low-order byte is not in the original 31-entry table, it has a
zero in this table, otherwise the first entry contains a index
into the second table. The second table contains 31 2-byte
values, containing the second byte of the CRC and the error
pattern for that byte. Hence, one checks that the high-order
bytes match, and if so, XORs the error pattern into the data
to correct the error. In summary, we use only slightly more
ROM for much better time complexity.

8.2.3 Message Formats
Since TVA requires extra packets to be transmitted over

the network, it requires some instrumentation to implement
on top of the existing functionality of the network stack.
We had to additionally create two new packet types for the
TVA-2 (verify) and TVA-ACK message. To differentiate
them from normal packets, we chose frame types that were
unused by 802.15.4, see Figure 10. Additionally, we set a
reserved bit in the header of a data transmission to indicate
to the receiver that the sender is TVA-capable.

8.2.4 Buffering
While the general description of the operation of TVA

in section 5 seems simple enough, implementation of such
a scheme requires additional complexity at the link layer,
primarily in the form of buffering. While in a traditional
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Figure 10: The format for TVA-2 and TVA-ACK
messages, following the notation of [22]. The TVA-
2 message is 8 bytes long, and contains the TVA
CRC, and a TVA-DSN (TSN) to identify the TVA
exchange. TVA-ACK is a 5-byte message, and fol-
lows the format of a traditional ACK, the only dif-
ference being the frame type in the Frame Control
Field (FCF). A Frame Check Sequence (FCS) con-
taining a CRC is appended for error detection only.

network setting, moderate buffering is not an issue, on the
RAM-constrained motes buffering is very costly. Hence, any
protocol proposed must have tight limits over the number
of buffers required at the transmitter and receiver in order
to be practical in a sensor network setting. Here we present
a buffering implementation which requires a relatively small
amount of RAM without loss of reliability.

The main reason buffering is needed is that if the receiver
receives a message which it can correct, it must hold this
packet at the link layer while it sends the TVA-2 message,
and wait until it receives a TVA-ACK message or a resend.
So, in the worst case, the mote must remember one packet
for each neighbor it is communicating with. The problem
becomes more severe if one considers that if the channel be-
comes briefly noisy, it may increase throughput if the mote
can transmit a new TVA-2 message for multiple corruptions
of the original message. Additionally, the mote must period-
ically resend the last transmitted TVA-2 message, because if
the transmitter successfully received the message and their
TVA-ACK was lost, the sender needs prompting to resend
the TVA-ACK. Hence, what appears to be a simple protocol
can be surprisingly complex to implement.

Our buffering scheme is as follows: The receiver has a fixed
set of u buffers, which may be used for holding received mes-
sages. When it receives a corrupted message, it checks the
buffers to determine if one is free before trying to correct
it. If the correction succeeds, the message is copied8 into
that buffer. All other buffers with the same Data Sequence
Number (DSN) as the received message are now marked as
unsendable. Periodically a timer fires on the mote instruct-
ing it to resend any outstanding TVA-2 messages9. If one
is found with no remaining resends, it and all other records
with that DSN are deleted. Otherwise, that message is sent
and its resend counter is decremented.

The default TinyOS link-layer transmission component
makes the assumption that only one message may be sent
at a time. This simplifies things slightly, because we do not
have to remember the entire contents of messages we have
transmitted. Instead, we can simply store short records con-
taining the TVA-2 CRC, the DSN of the packet, whether the
request is complete or not, and if so what was the correct
TVA-2 DSN. Even though these buffers are very small, they
also must be carefully managed, because if we simply create
one for every new message there is no bound on the number
of buffers needed. The penalty for forgetting a message too

8Actually, no memory copying occurs because of its expense,
rather the pointer to the buffer in which to place received
messages is changed.
9Since one can only send a single message at a time, the mote
processes TVA-2s to be resent in a round-robin fashion.

soon is large, as it means the application will believe that
message was transmitted when in actuality it was not.

To overcome these problems, the transmitter stores at
most 2 records for every destination address. When an ACK
arrives, the corresponding record is deleted. When a cor-
rect TVA-2 comes in, the record is marked as completed.
When a new message is ready to be resent, it replaces the
oldest DSN10. To ensure that replacing the older DSN did
not overwrite valuable information, we require the receiver
to refrain from sending any more TVA-2 messages (ACKs
are still allowed) if it is waiting for a response to previous
TVA-2 messages with a different DSN from the same trans-
mitter. Hence the buffer space for receiver and transmitter
combined is

lu+2nc (26)

Where l is the message length, u is the user-defined number
of receiver message buffers, n is the number of neighbors,
and c is a small constant describing the size of a TVA-ACK
record (8 bytes in our implementation). This should be com-
pact enough to be practical for most sensor motes. An im-
portant note is that if the number of neighbors is estimated
too low, then the TVA transmitter can detect this by ob-
serving that there are too many destination addresses in
its record list, and can send the message without its TVA-
capable bit set (equivalent to performing ARQ).

8.3 Performance Comparison
Figure 12 shows that our implementation of TVA(l = 41,

u = 3, n = 2, c = 8) shows an impressive improvement
in RAM over HARQ (52% less than than the unoptimized
HARQ and 26% less than the optimized version), which
is critical on the RAM-constrained MicaZ’s. As for ROM,
TVA and all implementations of HARQ use ∼5k more than
the default of ∼20k. TVA and HARQ use essentially the
same amount of ROM (within 4%), and ROM is not as crit-
ical of a commodity on the MicaZ, since it has 128k total. In
terms of computation time, TVA is extremely fast compared
to HARQ, since as shown in Figure 11 HARQ-2 takes up to
20× the encoding time and 9× the decoding time of TVA.

8.4 Backwards Efficiency
Backwards compatibility is important for many network-

ing systems, and sensor networks are no exception. Sensors
are often placed in difficult-to-access places such as radioac-
tive plants or volcanoes, and if sensor software is to be up-
graded it is much more efficient to do so piecemeal instead
of bringing the entire system down and then back online.
Even in networks where the sensors are easier to access, one
may wish to evaluate a new protocol on a subset of motes
before deploying it to the entire system. Lastly, if a proto-
col requires a large amount of energy or computation time,
motes may desire the ability to conserve resources by switch-
ing to a simpler protocol at any time. While there are many
notions of backwards compatibility in networks, with the
weakest being that some meaningful communication can oc-
cur between devices running different protocols, a stronger
notion is needed in order to ensure that communication can
efficiently occur in such a mixed network. We argue that a
protocol should be backwards-efficient, as defined below:

10TinyOS enforces strictly increasing DSNs, so this is easy
to determine. In applications where this is not the case one
could store a timestamp.
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Figure 12: RAM consumption across libraries. The
red line shows the maximum available RAM on the
motes (of the 4K total ∼512 bytes are needed for
stack space).

• For protocol A to be backwards-efficient with proto-
col B, any number of nodes running protocol A must
be able to communicate with any number of nodes
running protocol B without any wasted transmission:
That is, no bytes should be sent to a mote which are
not useful to it due to it using the wrong protocol.

• For protocol A to be fully backwards-efficient with pro-
tocol B, any node running protocol A must be allowed
to switch, for any new data transmission, to protocol
B, and vice-versa, without sending any unnecessary
data.

By this definition, TVA11 is backwards efficient with

11Because our interaction with the radio causes a slight de-
lay which causes it to be difficult to send an ACK to the
transmitter in time, our current implementation is not fully
backwards efficient with the default TinyOS stack. Simply
increasing the ACK waiting constant from 7.8 ms to 12.2 ms
will allow efficient interoperability, and because this number
does not control when resends occur this modification should
not have a sizable effect on throughput. Note that HARQ

Transmitter

Laptop blasting 802.11
traffic

Receiver

Laptop Logger

Figure 13: Experiment Setup. A laptop blasting
WiFi traffic is placed between two motes. A logging
laptop is placed to the side.

802.15.4. If the receiver is using 802.15.4 and the trans-
mitter is using TVA for any message, no TVA-2’s will be
sent and thus it will appear as though both nodes are us-
ing 802.15.4. If the transmitter is using 802.15.4 and the
receiver TVA for any message, the receiver will know not to
send the TVA-2 message due to the fact the reserved bit in
the header has not been transmitted in the data packet.

Note that no FEC scheme can be backwards efficient with
802.15.4. The reason is that by definition, at some point
FEC must add additional redundancy to a data packet.
When it does, a 802.15.4 receiver, even if capable of ignoring
that redundancy, cannot use those transmitted bytes.

9. EXPERIMENTS

9.1 Experiment Setup
After implementing HARQ and TVA, we performed an ex-

perimental comparison of these two protocols to ARQ in or-
der to demonstrate the real-world merit of our error correc-
tion scheme. In contrast to our simulations, which consider
bit corruption resulting from distance and obstruction-based
errors, our experiment is designed to demonstrate that TVA
shows throughput and average code rate improvements in
the presence of 802.11 interference. Since 802.11 operates in
the same 2.4Ghz band as 802.15.4, interference from WiFi
enabled devices has been widely recognized as a problem in
sensor networks [12]. One solution to WiFi interference is
to ensure proper separation of the channels used by both
devices, however [12] argues that this is difficult in practice
and improving coexistence of 802.15.4 and 802.11 on the
same channel is often a more attractive solution. Although
the source of the bit errors is WiFi interference rather than
obstructions, we still consider correction of single half-octet
errors, since as explained in section 4 the half-octet error
pattern can be attributed mostly to the hardware. Instead
of a complex multi-node testbed, we believe the best method
to elucidate the differences in performance between proto-
cols, is to use a simple, easy to analyze two node setup.

Our experiment used two MicaZ motes, one as a dedicated
transmitter, the other as a dedicated receiver. The trans-
mitter was placed at one end of a room on a small table.

also requires this change.



The receiver was placed approximately 12’ away on a table
of equal height. The receiver was placed atop a MIB 510
programming board, which was connected via a serial-USB
cable to a laptop. The laptop was placed 6” to the left of
the mote, and its purpose was to record logging data sent
through the serial cable. Approximately 3” in front of the
mote we placed a second laptop, whose purpose was to gen-
erate the 802.11 interference. It ran the TTCP [20] tool
in UDP mode, which broadcasted a continuous stream of
802.11 packets over the laptop’s wireless interface. Though
the laptop was in the line of sight of the motes, its place-
ment alone did not contribute significantly to the error rate,
as when we disabled TTCP the BER between the two motes
dropped to 0.

One major obstacle we encountered when comparing sev-
eral different protocols experimentally is that recreating the
exact error conditions during multiple runs is exceedingly
difficult12. Even making every effort to maintain the phys-
ical relationship between the equipment, the slight move-
ments required to reprogram the motes between trials caused
major differences in PER. Also, the channel quality varies
over time, meaning even within a single run conditions were
changing substantially. To attempt to overcome this, we
used a two-pronged approach: a calibration phase before
each trial, and multiple short trials for each protocol. For
the calibration phase, we slightly modified the equipment
positioning until the BER and PER were within a accept-
able range. Then, we reset the receiver mote, and left the
equipment unmoved for the remainder of the trial. We then
ran each protocol multiple times in slightly different posi-
tions, with each trial being fairly short (1000 packets). This
allowed us to more easily compare the performance of dif-
ferent protocols in a variety of error conditions. For a more
direct comparison with less noise, see section 6.

9.2 Experimental Results
We evaluate the following 4 protocols experimentally:

ARQ, TVA, HARQ-2 and HARQ-6. We created a simple
application which sends unicast packets to a receiver us-
ing TinyOS’ PacketLink functionality. Since there are no
default values for the number of retransmissions and the
time between retransmissions, we use the values suggested
in TEP 127 [19]. All packet sizes are fixed to TinyOS’s de-
fault maximum packet size. To simulate the fact that sensor
network applications generally are concerned with periodic
data collection, a minimum time of 50ms between packet
transmissions at the application layer is enforced.

Each receiver logs summary statistics about number of
bytes transmitted and received, PER and BER (before cor-
rection), and time elapsed since the first received packet. We
did not consider it necessary to measure energy usage, since
as explained in section 6.2 time and energy usage should be
strongly correlated. These statistics are transmitted to the
logging laptop every 100 successfully received packets.13 We
ran each protocol until the application had received 1,000
packets, and tested each protocol approximately 10 times.

The experimental results are presented in Figures 14–15
and Table 1. As expected, the result graphs show that

12Indeed, these differences have led others (e.g. [3]) to refrain
from performing an experimental comparison altogether.

13Because of the high speed of the various protocols, we were
unable to log more detailed information such as the exact
error patterns encountered.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Packet Error Rate (PER)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

A
v
e
ra

g
e

C
o
d
e

R
a
te

ARQ

TVA

HARQ-2

HARQ-6

Figure 14: Experimental results for average code
rate compared to PER.
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Figure 15: Experimental results for throughput
compared to PER.

protocol extra time per packet extra bytes per packet
error (ms) error

ARQ 172.72 42.00
TVA 119.69 28.81
HARQ-2 152.21 33.34
HARQ-6 131.69 54.84

Table 1: Summarized Experimental Results

for no errors (this data point was taken in a different en-
vironment without interference), results follow the expected
trend: ARQ and TVA perform the best, while HARQ-2 and
HARQ-6 perform worse due to their high overhead.

The graphs have some noise, but generally show TVA per-
forming best, both in throughput and in average code rate,
especially at lower error rates. This is partly due to the
fact that TVA could correct 43% of errors without adding
additional redundancy to the data packet. In comparison,
HARQ-2 was able to correct 41% of errors averaged over all
trials, compared to TVA’s 43%, so HARQ-2 did not show
a significant gain in correcting ability. While HARQ-6 was
able to correct 74% of errors, this gain in error-correcting
ability was not worth the 6 extra bytes of redundancy.



To get better understanding of the experimental results, in
Table 1 we present several summarized metrics. To compare
across scenarios with different PERs, these metrics quantify
how much extra time and bytes each protocol takes per data
packet error (recall that all packets are the same length,
making this a fair comparison). “Extra” refers to a compar-
ison with the amount of bytes and time ARQ would take
to transmit the same amount of data (calculated from a de-
ployment of ARQ in an error-free environment).

Table 1 shows that TVA is more efficient in time and
communication compared to ARQ and HARQ. Specifically,
ARQ takes 42 bytes (the size of a resend, 41 bytes of the
TinyOS packet protected by the CRC, plus one additional
length byte) to recover from each data packet error (or en-
counter another errored data packet), while TVA is able to
communicate less by correcting errors. We see that HARQ-
2 does better than HARQ-6 in terms of bytes sent (since
HARQ-6 adds extra additional redundancy to each data
packet), but worse in terms of time (since HARQ-6 can cor-
rect more errors). TVA does better because it avoids this
tradeoff, since additional redundancy does not have to be
provided upfront. Overall, we see that TVA uses 31% less
redundant communication and 30% less additional time to
recover errored packets compared to ARQ.

10. CONCLUSION
In this paper, we present Transmit-Verify-Acknowledge

(TVA), a link-layer error recovery protocol designed for low-
error scenarios. TVA uses a novel method of CRC er-
ror correction to correct bit errors in resource-constrained
networks, along with a carefully-designed confirmation ex-
change to ensure reliability. We show, through trace-driven
simulations and sensor network experiments, that TVA
improves time and communication efficiency by over 30%
compared to ARQ, while performing better than resource-
intensive FEC-based schemes (HARQ). The key features of
TVA, focusing error correction on only the most common er-
ror patterns, and injecting redundancy only when an error
occurs, are likely to generalize well to future systems.

Future work includes integrating TVA with adaptive
schemes. In adaptive schemes, ARQ is used in low-error
situations, and FEC is used in high-error situations where
more redundancy is needed. We believe that if TVA were
substituted for ARQ in an adaptive system, it could greatly
increase the amount of acceptable errors before a switch to
FEC was required, improving performance when the BER is
low. Another future direction is to investigate the potential
applicability of TVA in the vast number of other systems
where CRCs are used, such as mobile networks or RFID.
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