

Selected CRC Polynomials Can Correct Errors and

Thus Reduce Retransmission

Abstract- For wireless sensor networks, minimizing

communication is crucial to improve energy

consumption and thus lifetime. Whereas the standard

way to deal with transmission errors is retransmission

(automatic repeat request ARQ), in this paper we

investigate an alternative: correcting bit errors using

Cyclic Redundancy Checks CRCs (which are already

used for error detection). Selected CRC polynomials -

including CCITT-16 which is used by IEEE 802.15.4 and

TinyOS - can correct 1-bit errors in up to 240 bits of

data. We present our send-check-confirm (SCC)

protocol that reduces retransmission without sacrificing

reliability since corrections are validated. In addition, we

list 64 16-bit candidate CRC polynomials that can

correct for 1- and 2-bit errors in less than 240 bits of

data.

Index Terms- Wireless Sensor Networks, Cyclic Redundancy

Check (CRC), Error Correction, Reliability, Network Protocol,

Low Power Comsumption

I. INTRODUCTION

Error detection using Cyclic Redundancy Checks(CRCs)

is implemented in most communication protocols.

However, relatively little work has been done in using these

CRCs for the correction of bit errors. Correcting bit errors -

instead of retransmitting the whole packet - improves energy

consumption and thus lifetime of wireless sensor networks,

given that communication is extremely expensive when

compared to computation [15]. Correcting 1- and 2-bit

errors is very worthwhile, considering that in a study of

IEEE 802.15.4, around 50% of errors are isolated to a single

bit, and 60% of burst errors are only two bits long [2].

The rest of the paper is organized as follows: We will

present background and related work in section 2, Section 3

will discuss single-bit error correction, Section 4 will

examine error correction protocols, Section 5 will analyze

the performance of our protocol, Section 6 will introduce the

motivation and implementation of multiple-bit error

correction, followed by discussion and conclusions.

II. BACKGROUND AND RELATED WORK

A. Cyclic Redundancy Checks

Cyclic redundancy checks use binary polynomial division to

detect errors. To compute a CRC one must first pick a

generator polynomial G. In practice, there are certain

recommended choices of G that increase the error detecting

ability of our CRC algorithm. [16] As an example, let G =

(x
3
+1). We represent the coefficients of the polynomial as

bits, so G=1001. We also know that the first bit of G will

always be a 1, so we only need to store n=3 bits, 001. Now

assume our original data M = 101110. To compute the

checksum of M, we must first append n bits to the end to

create D=101110000 and take CRCG(D). This is simply

binary polynomial division of G into D.

011

1001

1010

1001

1100

000

110

1001

1010

000

101

1001

101011

1011100001001

So the CRCG(101110000) is 011 in binary (3 in decimal).

Then our transmitted message M’ consists of M

concatenated with its CRC, or 101110011.

The receiver takes the CRC of what it receives. If there is

no corruption, this CRC will be zero, otherwise, an error is

detected. In our example, we take CRCG (101110011)=0,

but if the last bit is corrupted CRCG (101110010)=1.

B. Related Work

Relatively little work has been done in using CRCs for the

correction of bit errors.

Much of the previous work has been concerned with only a

single generator polynomial , such as a paper titled Single

Bit Error Correction Implementation in CRC-16 on FPGA

[5], which offers optimizations for single-bit correction that

are only applicable for CRC-16-X25. They mention that

their results could be easily modified for another 16-bit

Travis Mandel, Jens Mache

This material is based upon work supported by the National Science
Foundation under Grant CNS-0720914. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

T. Mandel is with the School of Computer Science, Carnegie Mellon

University Pittsburgh, PA (e-mail: tmandel@andrew.cmu.edu).
J. Mache is with the Computer Science Department, Lewis & Clark

College, Portland, OR (e-mail: jmache@lclark.edu)

polynomial, but their method relies heavily on the fact that

the generator polynomial has exactly 16 bits.

[4] discusses further hardware-level optimizations for the

table used in single-bit error correction (this table is

described in section III). They claim their methods work for

any received message length and any formal CRC generator

polynomial, but do not offer a thorough discussion of single-

bit error correction over generalized polynomials and

messages.

McDaniel’s paper on single-bit error correction [1] gives a

much more thorough analysis and is discussed in detail in

section III.

Related work regarding reduced retransmission includes [10,

11, 9, 8] and is discussed further in Section VII.

III. SINGLE BIT ERROR CORRECTION

In [1] McDaniel describes a tabular method for correcting
single bit errors given a n+1-bit generator polynomial G. The
first step is to precompute an error correction table T for the
particular choice of G. To do this, one creates a message Z of
length 2

n
 -1 that is composed entirely of zeros. Then one

changes each consecutive bit i of Z to 1 creating zi, and fills
table T such that T[CRCG(zi)]=i. For example, n=3 and
G=x

3
+x+1 yields z1=1000000 and CRCG(z1)=5, z2=0100000

and CRCG(z2)=7, CRCG(z3)=6, CRCG(z4)=3, CRCG(z5)=4,
CRCG(z6)=2, CRCG(z7)=1. Thus T={correct, 7, 6, 4, 5, 1, 3,
2}. Note that the zeroth entry in the table will not be used
since a CRC of zero indicates correctness, thus there is no bit
to correct. If no two mutations of Z have the same CRC,
meaning CRCG is injective for every zi, then G is a suitable
polynomial for error correction. This means given any
message M’ (consisting of an original message M of size
L=2

n
-1-n with an n-bit checksum C1 appended), one can

correct any single bit error.

To correct single-bit errors, one takes the CRCG(M’)=C2.
If C2 is zero, the initial message is correct. Otherwise, T[C2]
is the index at which the single bit error occurred. Continuing
the above example, M=1100 yields C1=CRCG(1100)=010
and M’=M concatenated with C1=1100010. Incorrect
reception of 1101010 yields C2= CRCG(1101010)=3. Since
this CRC is not zero, we examine our table. T[3]=4, which
indicates that bit 4 was corrupted. Thus flipping bit four
gives us 1100010, the correct message.

A. Generator Polynomials

McDaniel’s paper [1] claimed that no commonly used
generator polynomials could be used for error correction.
This would present some obstacles to the widespread use of
error correcting CRCs, as there are certain error detecting
properties of most commonly-used generator polynomials
[16] that make them more resilient than others to common
forms of corruption, such as burst errors. However,
McDaniel’s claim is untrue. We have verified that the CRC-
8-CCITT (x

8
 + x

7
 + x

3
 + x

2
 + 1) standard does indeed have

this error-correcting property. Other polynomials also have
this capability with smaller message sizes, see section III.B.2,
below.

B. Dealing with Different Message Sizes

McDaniel [1] also claimed that the table T (described
above) can handle any message size of 2

n
-1-n. This is not

the case. Continuing the above example, M=11 yields
C1=CRCG(11)=101 and M’=M concatenated with C1=11101.
Incorrect reception of 01101 yields C2= CRCG(01101)=6.
Since this CRC is not zero, we examine our table. T[6]=3,
which indicates that bit 3 was corrupted. But flipping bit 3
gives us 01001 which is incorrect.

 McDaniel’s original method can only handle messages
of exactly 2

n
-1-n bits. Thus messages using 16 bit error-

correcting CRCs must contain 2
16

-1-16 ≈ 8 KiloBytes of data
(whereas TinyOS [7] allows at most 29 data Bytes). Being
forced to send messages of exactly this length across the
medium would require an unreasonable amount of bandwidth
and energy, as increasing the amount of data in each packet
requires more of these resources. Fixing message length in
this way would also increase the probability that several bits
of our message were corrupted. We have devised two
solutions to this problem:

1) Bit “Padding”

By padding the message only while calculating the CRC,
not transmitting the padded bits, we can avoid such
problems. When calculating C1, we simply iterate 2

n
-1-n

times through the bits of the message, considering the bit to
be zero if we have run off the end of the message. Then
when calculating C2, we iterate through all but the last n bits
of the message, add zeros until we reach 2

n
-1-n, and then

iterate through the last n message bits. For example, if n=3
and M’ = 11101, we take CRCG(1100101) In such a manner
we still have to send only L+n bits across the medium, using
a minimum of bandwidth, but can accommodate any
message of length L2

n
-1-n.

2) Initialization

If we know a maximum data length X<2
n
-1-n, we can

make Z of length X+n when we calculating the correction
table. Then we only have to bit pad smaller messages to
length X. In addition to potentially saving bandwidth, this
also saves time, as the CRC method has to consider fewer
padding bits. For example, n=3, G=x

3
+x+1 and X=2 yields

CRCG(00001)=6, CRCG(00010)=3, CRCG(00100)=4,
CRCG(01000)=2, CRCG(10000)=1, thus T={correct, 5, 4, 2,
3, --, 1, --}, and we can correct any message up to length
X=2. Given a maximum data length X<2

n
-1-n, the table is

not completely filled and more generator polynomials are
suitable for error correction.

IV. PROTOCOLS

The major problem with replacing the original automatic

repeat request (ARQ) protocol with a single-bit send-correct

(SC) protocol is that it will almost certainly lead to wrong

corrections. To see this, assume the message M’ has two

errors. Then when M’ is received, C2 will be computed and

found to be non-zero. Thus C2 will be looked up in the

table, indicating a bad bit R (assuming the table has a

mapping for that CRC). When the checksum C is taken of

M’ with R flipped, C will be zero, since the table was

constructed to have that property. This is unacceptable as

now we perceive a message as correct that is in fact

incorrect: we started with two errors and corrected only one

bit. Thus one can only use the SC protocol if one can be

certain that all messages have either 0 or 1-bit errors, and no

multiple-bit errors.

Figure 1. ARQ and SC protocols

A. Proposed SCC protocol

In order to resolve this issue, we need some sort of

confirmation of the bit that we suspect of being faulty. We

propose a single-bit send-check-confirm (SCC) protocol

which includes this safeguard. The first step after

hypothesizing an error bit R is to check whether or not R

falls within the padding area, as if it is, it cannot possibly be

right. Otherwise we send to the original sender R’s index

concatenated with R’s value. Because this message is much

shorter the original (~log n bits), the probability of

corruption is much lower. To guard against corruption of

this short message, one can either append a CRC for error

detection only, or use some simple error correction scheme

such as triple modular redundancy. When the original

sender receives the message, they examine the original data.

If the received bit is indeed correct, the sender sends a very

short message indicating this fact. The mechanism is very

similar to the HTTP protocol’s “304 Not Modified”

message, which is a short message sent in place of a resend

of a web document if there is no need to resend the object

(i.e. the document has not been modified since it was last

accessed) [3].

If the bit is not correct, the sender resends the original

message. Thus, if there is a correctable error, we have

dramatically shortened the message size, and if not, the

resend penalty remains the same as in the original ARQ

protocol. Fig. 1 depicts the ARQ and SC protocols, and Fig.

2 depicts our proposed SCC protocol.

Figure 2. Proposed SCC protocol, in the case of a single bit error.
Note that message size is severely decreased, as M’ does not have to

be sent a second time.

We implemented the above algorithms, see class

diagram in Fig. 3.

Figure 3. Class Diagram

V. PERFORMANCE ANALYSIS:

There is a potential for error in our SCC protocol, in that

it is possible to have the server reply that we have corrected

all errors when in fact we have not. We call this

“undercorrecting” because some errors remain after the

initial correction. We will now derive the probability that

such an event occurs.

We can model bit errors as a random process in which

with some probability p we flip each bit in our data. [14]

This is equivalent to X=Binomial(n,p), where n is the

number of corruptible bits. In our case, there are n=248 bits

(The 232 message bits plus 16 CRC bits) . E[x]=np is

between 1 and 1.5 since [2] tells us that around 50% of bit

errors are single-bit errors. We would like to know the

probability that the server responds that our guess is

correct(event A). This is the probability that the table has an

entry and the bit in the table is one of the bits that was

flipped originally. We do not care about the case where

X=0, since we are assuming for argument’s sake an

infalliable CRC. If X is 1, we know that the table has an

entry (because of how it is constructed) and that entry is

correct (since we have only a 1-bit error). happen, If x is

greater than 1, we know that the probability that the table is

full is independent of the probability that the bit chosen is

correct. The probability the table entry chosen has a value is

the number of entries in the table over the table size (we

have assumed a uniform distribution of errors). The

probability the bit is flipped is the number of bits chosen, k,

over the total number of possible bits, 248. Hence:

CRC(n, G) Correction

buildCorrectionTable()

makeSafeMessageEC(m)

checksumEC(m) – Pads

at end to reach

max.message size, then with

n bits

checksumEC2(m) – Pads

inbetween message and CRC to

simulate max message size

findSingleError(CRC)

findDoubleError(CRC)
-Looks CRCs up in table

Methods to find valid generator

polynomials for error

correction:
findValid(length)

 isValidPolynomial(poly)

 checksumGEN(m,

poly)
-Generator

polynomial specified,

like checksumP

otherwise

makeSafeMessage

(m)

checksumP(m

)- pads with n

bytes

checkMessage(m)

checksumD(m)
 -does not pad

stripMessage*(m)
Simply

removes

CRC from

message

sender receiver

M’

If CRC bad

Bit location and value

Confirmation
If bit correct

sender receiver

M’
If CRC

bad NACK or timeout

M’

Perform

correction

Both
ARQ only

SC only

Key

Pr 𝐴 = Pr 𝑥 = 1 +
248

216
× Pr 𝑥 = 𝑘 ×

𝑘

248

248

𝑘=2

=Pr 𝑥 = 1 +
1

216
 𝑘 Pr 𝑥 = 𝑘 248

𝑘=2

=Pr 𝑥 = 1 +
1

216 (𝐸 𝑘 − 1 Pr 𝑥 = 1 − 0 Pr 𝑥 = 0)

=Pr 𝑥 = 1 +
1

216 (𝑛𝑝 − Pr 𝑥 = 1)

Notice that either x is one and we have corrected our data

correctly, or we undercorrect our data. The probability of

under-correcting our data is
1

216 (248𝑝 − Pr 𝑥 = 1), which

is around
1

216 since np is about 1.5 and Pr[x=1] is around .5 .

Thus the probability of under-correcting our data is only
1

216

with our protocol, which is acceptably small compared to

the probability that the CRC fails to detect the error in the

first place.

VI. MULIPLE-BIT ERROR CORRECTION

A. Motivation

Figure 4. TinyOS Packet Format (sizes in bytes)

As shown in Fig. 4, TinyOS [7] uses a message format

that allows at most 29 data Bytes (232 data bits) but 16 CRC

bits. We found that the generator polynomial used in the

IEEE 802.15.4 standard, x
16

+x
12

+x
5
+1, is usable for single-

bit-error correction over this message length. However an

8-bit CRC would already be sufficient to correct single bit

errors in up to 2
8
-1-8=247 bits of data. For formats such as

TinyOS’ which use a longer CRC, we can use the extra

information provided by the CRC to correct multiple

erroneous bits.

B. Implemenation and Analysis

In order to perform multiple bit error correction, one

needs a CRC of length n such that 2
n
is much larger than the

maximum message length L. In fact, to perform k-bit error

correction, 2𝑛 𝐿
1
 + 𝐿

2
 + ⋯ + 𝐿

𝑘
 . The reason for this

is that the CRCs of 1,2,..k-bit corrupted zi’s must be unique,

so that our table mapping is injective. Once we have a table

T with such a unique mapping, we may proceed with the

SCC protocol, with the difference being that our table can

indicate that several bits are corrupted, and we must send k

locations and k values to be verified. Note that we will still

receive only a confirmation or a resend, even if only one

hypothesized error bit is incorrect.

We tested all 16-bit CRC polynomials such that all one

and two bit errors in 232 bits of data mapped to unique CRC

values. Out of the 2
16

 possibilities, we found 64 polynomials

that can correct for one and two bit errors, see Table 1. Fig.

5 shows that as the maximum message (data) size increases,

at first a very large number of possible polynomials exist,

but this decreases quite abruptly after 113 bits of message

(data) length, and remains fairly constant until 240 bits, at

which point it is not possible to perform two bit error

correction with a 16-bit CRC. The exact reason for such

abrupt decreases in polynomial availability is left for future

work. We also noticed that, in general, the polynomials that

work for a given message length work for all lengths less

than that, which explains why the graph is monotonically

decreasing.

We also modified our protocol such that the receiver may

detect 1 or 2 bit errors and send the locations and values to

the original sender. This causes only a minor increase in

communication, and the runtime is not impacted. However,

the size of the correction table is now 128 KB, as compared

with 0.25KB for single-bit correction
1
. The advantage of

multiple-bit error correction is further reduced

retransmissions.

TABLE I. LIST OF 64 CRC16 GENERATOR POLYNOMIALS THAT CAN

CORRECT 1- AND 2-BIT ERRORS IN 232 BITS OF DATA.

0000111000000111a

0001100100110001

0001110001101011

0010000100001001

0010010010101001

0010010111010011

0010011111111001

0010101001001001

0011001100111111

0011010101011001

0011011010010011

0011111101010011

0011111111001001

0100010111101111

0101011011110011

0101100100110101

0101101100101111

0110111101100011

0110111111101101

0111000111100111

0111001000110011

0111010101011101

0111100010110111

0111100111001011

0111101110111101

0111110011111011

1000000100000011

1000110111101101

1000111110100111

1001001011011001

1001001011110111

1001001110000111

1001010111111001

1001011101001001

1001100010011101

1001110101010111

1001111011010101

1010001110001011

1010011100111101

1010110001110001

1010110101101011

1011011111011011

1011111001111101

1100000011100001

1100000100000111

1100001110010011

1100100111001111

1
 Here is how these numbers were computed: For single-bit correction, we

have 232 data bits and 8 CRC bits, for a total of 240 bits. So there are 240

potential bad indices, and we can represent the index number with 8 bits. A
CRC-8 correction table has 2^8 rows of a byte each =.25KB.

For double-bit correction, we have 232 data bits and 16 CRC bits, for a total

of 248 bits. So there are 248 potential bad indices, and we can represent the
index number with 8 bits. A CRC-16 correction table has 2^16 rows of a

byte each =64KB. But each entry in the table has two possible indices, so

we have 128KB of space for the double-bit error correction table

1100101111100011

1100111100011101

1101010101010111

1101010101110011

1101101000111101

1101111010010011

1110001000111111

1110001110001111

1110011100100111

1110100010101111

1110100110110101

1110101000101111

1110110101101111

1110111101000101

a. Coefficients of x15,x14, …, x0 are listed left to right, coefficient of x16 is always 1

Figure 5. As the maximum message (data) size increases, the number of

CRC polynomials for 1- and 2-bit error correction decreases.

VII. DISCUSSION

Related work about reducing the retransmission overhead
by utilizing the corrupted packet includes [10, 11, 9]. In
Partial Packet Recovery (PPR) [11], the receiver measures
confidence values for the correctness of each bit in decoding,
and requests for retransmission only those bits that are likely
in error. In SOFT [10], the receiver stores the confidence
values of the corrupted packet and combines it with the
retransmitted packet, thereby improving packet reception
probability. In the ZERO retransmission scheme [9],
baseband level network coding is used to mix the
retransmitted packet with the next packet. Our work is
different since (1) our schema does not depend on a next
packet and (2) our error-correcting CRC need less
computational resources and energy.

ZigZag decoding [8] avoids retransmissons - that are
caused by collisions - by decoding the non-overlapping
pieces. Our work is different since (1) our errors do not have
to be caused by collisions and (2) our error-correcting CRC
needs less computational resources and energy.

Reed-Solomon Error Correction is a widely used
correction scheme, however one of its faults is that it fails to
efficiently correct or detect errors above a certain corruption
level. [12] Thus many network architectures Hybrid ARQ
(HARQ) protocol, which employs Reed-Solomon error
correction in conjunction with a detecting CRC. [13] This
allows the network to be able to correct small errors, but also
detect high-error situations that Reed-Solomon cannot
correct. However, our protocol uses only the CRC, thus

avoiding the extra Reed-Solomon repetition needed by the
HARQ detection-correction scheme.

VIII. CONCLUSION

Wireless communication faces transmission errors, but
reducing retransmission can extend the lifetime of energy-
constrained sensor networks. Our main contributions are
summarized as follows:

 It is possible to correct errors using CRCs already
present in sensor networks. Error correction can
drastically reduce communication as resending
information becomes necessary less frequently.

 We presented a simple and effective send-check-confirm
(SCC) protocol that reduces retransmission, but
reliability is not sacrificed since corrections are
validated. The mechanism is very similar to the HTTP
protocols’s “304 Not Modified” message (indicating that
resending the document is not necessary).

 Many 16-bit CRC polynomials, including x
16

+x
12

+x
5
+1

which is used by IEEE 802.15.4 and TinyOS, can
correct 1-bit errors in up to 240 bits of data. Correcting
bit errors is worthwhile, considering that in a study of
IEEE 802.15.4 “around 50% of errors are isolated to a
single bit, and 60% of burst errors are only two bits
long” [2].

 We found 64 candidate polynomials for 16-bit CRC that
can correct for 1- and 2-bit errors in less than 240 bits of
data. Since TinyOS’ message format allows up to 232
bits of data, we recommend the use of one of these CRC
polynomials.

 The number of generator polynomials that work for
multiple-bit error correction is rather sparse as the
message (data) size increases.

Future research can be pursued in the following
directions: a thorough experimental evaluation of the SCC
protocol, optimization of the tabular method such as that
proposed in [4], modifying existing protocol stacks (e.g.
TinyOS [7] or SunSPOT [6]) and investigating table space/
time tradeoffs.

REFERENCES

[1] B. McDaniel, “An Algorithm for Error Correcting Cyclic

Redundance Checks”. Dr.Dobb’s Journal, 2003

[2] A. Vedral, J. Wollert, “Analysis of Error and Time Behavior of the

IEEE 802.15.4 PHY-Layer in an Industrial Environment”. IEEE

International Workshop on Factory Communication Systems, 2006

[3] "RFC 2616 Hypertext Transfer Protocol",

http://www.faqs.org/rfcs/rfc2616.html

[4] D. Yun, G. Ning, and D. Zaiwang, “CRC Look-up Table

Optimization for Single-Bit Error Correction”. Tsinghua Science &
Technology, Volume 12, Number 5, October 2007

[5] S. Shukla, and N. Bergmann, “Single Bit Error Correction

Implementation in CRC-16 on FPGA”. In International Conference on

Field Programmable Technology, 2004

[6] SunSPOT device, http://www.sunspotworld.com

[7] TinyOS, http://tinyos.net

[8] S. Gollakota and D. Katab, “ZigZag Decoding: Combating Hidden
Terminals in Wireless Networks”, In Proc. ACM SIGCOMM, 2008

[9] S. Yun and H. Kim, “Towards Zero-Cost Retransmission

throughPhysical-Layer Network Coding in Wireless Networks”, In

Proc. ACM SIGCOMM, 2008

[10] G. R. Woo et al., “Beyond the Bits: Cooperative Packet Recovery

Using Physical Layer Information”, In Proc. ACM MOBICOM, 2007.

[11] K. Jamieson, and H. Balakrishnan, “PPR: Partial Packet Recovery for
Wireless Networks”. In Proc. ACM SIGCOMM, 2007.

[12] A. Dagnelies, “Algebraic soft-decoding of Reed-Solomon codes”

Universite Catholique de Louvain Master’s Thesis, 2007. P.57

[13] “Packet Front-End Link Protocol” Polygon Systems.

http://www.polygon-control-systems.com/interfaces_pflp.htm

[14] G. R. Grimmett, and D. Stirzaker, Probability and Random Processes.
New York: Oxford University Press, USA, 2001. P.33

[15] N. Bulusu, “CSE 410/510 Sensor Networks Winter 2009

Lecture 1”: http://www.cs.pdx.edu/~nbulusu/courses/cs410-

win09/lectures/Lecture1-win09.ppt. Slide 14.

[16] P. Koopman and T. Chakravarty, “Cyclic Redundancy Code (CRC)
Polynomial Selection For Embedded Networks” The International

Conference on Dependable Systems and Networks, DSN-2004, 2004.

