
 

 

Selected CRC Polynomials Can Correct Errors and 

Thus Reduce Retransmission 
 

Abstract-  For wireless sensor networks, minimizing 

communication is crucial to improve energy 

consumption and thus lifetime. Whereas the standard 

way to deal with transmission errors is retransmission 

(automatic repeat request ARQ), in this paper we 

investigate an alternative: correcting bit errors using 

Cyclic Redundancy Checks CRCs (which are already 

used for error detection). Selected CRC polynomials - 

including CCITT-16 which is used by IEEE 802.15.4 and 

TinyOS - can correct 1-bit errors in up to 240 bits of 

data. We present our send-check-confirm (SCC) 

protocol that reduces retransmission without sacrificing 

reliability since corrections are validated. In addition, we 

list 64 16-bit candidate CRC polynomials that can 

correct for 1- and 2-bit errors in less than 240 bits of 

data. 
 

 

Index Terms- Wireless Sensor Networks, Cyclic Redundancy 

Check (CRC), Error Correction, Reliability, Network Protocol, 

Low Power Comsumption 

I.  INTRODUCTION  

Error detection using Cyclic Redundancy Checks(CRCs) 

is implemented in most communication protocols.  

However, relatively little work has been done in using these 

CRCs for the correction of bit errors. Correcting bit errors - 

instead of retransmitting the whole packet - improves energy 

consumption and thus lifetime of wireless sensor networks, 

given that communication is extremely expensive when 

compared to computation [15]. Correcting 1- and 2-bit 

errors is very worthwhile, considering that in a study of 

IEEE 802.15.4, around 50% of errors are isolated to a single 

bit, and 60% of burst errors are only two bits long [2]. 

The rest of the paper is organized as follows: We will 

present background and related work in section 2, Section 3 

will discuss   single-bit   error   correction,  Section 4  will 

examine error correction protocols, Section 5 will analyze 

the performance of our protocol, Section 6 will introduce the            

motivation and implementation of multiple-bit error 

correction, followed by discussion and conclusions. 

 

 

 

 

II. BACKGROUND AND RELATED WORK 

A. Cyclic Redundancy Checks 

Cyclic redundancy checks use binary polynomial division to 

detect errors.  To compute a CRC one must first pick a 

generator polynomial G.  In practice, there are certain 

recommended choices of G that increase the error detecting 

ability of our CRC algorithm. [16]  As an example, let G = 

(x
3
+1). We represent the coefficients of the polynomial as 

bits, so G=1001.  We also know that the first bit of G will 

always be a 1, so we only need to store n=3 bits, 001.  Now 

assume our original data M = 101110.  To compute the 

checksum of M, we must first append n bits to the end to 

create D=101110000 and take CRCG(D).  This is simply 

binary polynomial division of G into D.   
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So the CRCG(101110000)  is 011 in binary (3 in decimal).  

Then our transmitted message M’ consists of M 

concatenated with its CRC, or 101110011. 

The receiver takes the CRC of what it receives.  If there is 

no corruption, this CRC will be zero, otherwise, an error is 

detected.  In our example, we take CRCG (101110011)=0,  

but if the last bit is corrupted CRCG (101110010)=1.  

B. Related Work 

Relatively little work has been done in using CRCs for the 

correction of bit errors.  

Much of the previous work has been concerned with only a 

single generator polynomial , such as a paper titled Single 

Bit Error Correction Implementation in CRC-16 on FPGA 

[5], which offers optimizations for single-bit correction that 

are only applicable for CRC-16-X25.  They mention that 

their results could be easily modified for another 16-bit 
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polynomial, but their method relies heavily on the fact that 

the generator polynomial has exactly 16 bits. 

[4] discusses further hardware-level optimizations for the 

table used in single-bit error correction (this table is 

described in section III).  They claim their methods work for 

any received message length and any formal CRC generator 

polynomial, but do not offer a thorough discussion of single-

bit error correction over generalized polynomials and 

messages. 

 

McDaniel’s paper on single-bit error correction [1] gives a 

much more thorough analysis and is discussed in detail in 

section III. 

 

Related work regarding reduced retransmission includes [10, 

11, 9, 8] and is discussed further in Section VII. 

 

III. SINGLE BIT ERROR CORRECTION  

In [1] McDaniel describes a tabular method for correcting 
single bit errors given a n+1-bit generator polynomial G. The 
first step is to precompute an error correction table T for the 
particular choice of G. To do this, one creates a message Z of 
length 2

n
 -1 that is composed entirely of zeros.  Then one 

changes each consecutive bit i of Z to 1 creating zi, and fills 
table T such that T[CRCG(zi)]=i.   For example, n=3 and 
G=x

3
+x+1 yields z1=1000000 and CRCG(z1)=5, z2=0100000 

and CRCG(z2)=7, CRCG(z3)=6, CRCG(z4)=3, CRCG(z5)=4, 
CRCG(z6)=2,  CRCG(z7)=1.  Thus T={correct, 7, 6, 4, 5, 1, 3, 
2}.  Note that the zeroth entry in the table will not be used 
since a CRC of zero indicates correctness, thus there is no bit 
to correct.  If no two mutations of Z have the same CRC, 
meaning CRCG is injective for every zi, then G is a suitable 
polynomial for error correction.  This means given any 
message M’ (consisting of an original message M of size 
L=2

n
-1-n with an n-bit checksum C1 appended), one can 

correct any single bit error.  

To correct single-bit errors, one takes the CRCG(M’)=C2. 
If C2 is zero, the initial message is correct. Otherwise, T[C2] 
is the index at which the single bit error occurred. Continuing 
the above example, M=1100 yields C1=CRCG(1100)=010 
and M’=M concatenated with C1=1100010. Incorrect 
reception of 1101010 yields C2= CRCG(1101010)=3. Since 
this CRC is not zero, we examine our table. T[3]=4, which 
indicates that bit 4 was corrupted.  Thus flipping bit four 
gives us 1100010, the correct message. 

A. Generator Polynomials  

McDaniel’s paper [1] claimed that no commonly used 
generator polynomials could be used for error correction. 
This would present some obstacles to the widespread use of 
error correcting CRCs, as there are certain error detecting 
properties of most commonly-used generator polynomials 
[16] that make them more resilient than others to common 
forms of corruption, such as burst errors. However, 
McDaniel’s claim is untrue.  We have verified that the CRC-
8-CCITT (x

8
 + x

7
 + x

3
 + x

2
 + 1) standard does indeed have 

this error-correcting property.  Other polynomials also have 
this capability with smaller message sizes, see section III.B.2, 
below.  

B. Dealing with Different Message Sizes  

McDaniel [1] also claimed that the table T (described 
above) can handle any message size of 2

n
-1-n.  This is not 

the case.  Continuing the above example, M=11 yields 
C1=CRCG(11)=101 and M’=M concatenated with C1=11101. 
Incorrect reception of 01101 yields C2= CRCG(01101)=6. 
Since this CRC is not zero, we examine our table. T[6]=3, 
which indicates that bit 3 was corrupted.  But flipping bit 3 
gives us 01001 which is incorrect.  

 McDaniel’s original method can only handle messages 
of exactly 2

n
-1-n bits. Thus messages using 16 bit error-

correcting CRCs must contain 2
16

-1-16 ≈ 8 KiloBytes of data 
(whereas TinyOS [7] allows at most 29 data Bytes). Being 
forced to send messages of exactly this length across the 
medium would require an unreasonable amount of bandwidth 
and energy, as increasing the amount of data in each packet 
requires more of these resources.  Fixing message length in 
this way would also increase the probability that several bits 
of our message were corrupted.  We have devised two 
solutions to this problem: 

1) Bit “Padding” 

By padding the message only while calculating the CRC, 
not transmitting the padded bits, we can avoid such 
problems.  When calculating C1, we simply iterate 2

n
-1-n 

times through the bits of the message, considering the bit to 
be zero if we have run off the end of the message.  Then 
when calculating C2, we iterate through all but the last n bits 
of the message, add zeros until we reach 2

n
-1-n, and then 

iterate through the last n message bits. For example, if n=3 
and M’ = 11101, we take CRCG(1100101) In such a manner 
we still have to send only L+n bits across the medium, using 
a minimum of bandwidth, but can accommodate any 
message of length   L2

n
-1-n. 

2) Initialization 

If we know a maximum data length X<2
n
-1-n, we can 

make Z of length X+n when we calculating the correction 
table.  Then we only have to bit pad smaller messages to 
length X.  In addition to potentially saving bandwidth, this 
also saves time, as the CRC method has to consider fewer 
padding bits. For example, n=3, G=x

3
+x+1 and X=2 yields 

CRCG(00001)=6, CRCG(00010)=3, CRCG(00100)=4, 
CRCG(01000)=2, CRCG(10000)=1,  thus T={correct, 5, 4, 2, 
3, --, 1, --}, and we can correct any message up to length 
X=2. Given a maximum data length X<2

n
-1-n, the table is 

not completely filled and more generator polynomials are 
suitable for error correction. 

IV. PROTOCOLS 

The major problem with replacing the original automatic 

repeat request (ARQ) protocol with a single-bit send-correct 

(SC) protocol is that it will almost certainly lead to wrong 

corrections.  To see this, assume the message M’ has two 

errors.  Then when M’ is received, C2 will be computed and 

found to be non-zero.  Thus C2 will be looked up in the 

table, indicating a bad bit R (assuming the table has a 

mapping for that CRC). When the checksum C is taken of 

M’ with R flipped, C will be zero, since the table was 

constructed to have that property.  This is unacceptable as 

now we perceive a message as correct that is in fact 

incorrect: we started with two errors and corrected only one 

bit.  Thus one can only use the SC protocol if one can be 



 

 

certain that all messages have either 0 or 1-bit errors, and no 

multiple-bit errors. 

 

Figure 1. ARQ and SC protocols 

A. Proposed SCC protocol 

In order to resolve this issue, we need some sort of 

confirmation of the bit that we suspect of being faulty. We 

propose a single-bit send-check-confirm (SCC) protocol 

which includes this safeguard.  The first step after 

hypothesizing an error bit R  is to check whether or not R 

falls within the padding area, as if it is, it cannot possibly be 

right.  Otherwise we send to the original sender R’s index 

concatenated with R’s value.   Because this message is much 

shorter the original (~log n bits), the probability of 

corruption is much lower. To guard against corruption of 

this short message, one can either append a CRC for error 

detection only, or use some simple error correction scheme 

such as triple modular redundancy.  When the original 

sender receives the message, they examine the original data.  

If the received bit is indeed correct, the sender sends a very 

short message indicating this fact.  The mechanism is very 

similar to the HTTP protocol’s “304 Not Modified” 

message, which is a short message sent in place of a resend 

of a web document if there is no need to resend the object 

(i.e. the document has not been modified since it was last 

accessed) [3]. 

If the bit is not correct, the sender resends the original 

message.  Thus, if there is a correctable error, we have 

dramatically shortened the message size, and if not, the 

resend penalty remains the same as in the original ARQ 

protocol. Fig. 1 depicts the ARQ and SC protocols, and Fig. 

2 depicts our proposed SCC protocol. 

 

Figure 2. Proposed SCC protocol, in the case of a single bit error.  
Note that message size is severely decreased, as M’ does not have to 

be sent a second time. 

We implemented the above algorithms, see class 

diagram in Fig. 3. 

 

Figure 3. Class Diagram 

V. PERFORMANCE ANALYSIS: 

There is a potential for error in our SCC protocol, in that 

it is possible to have the server reply that we have corrected 

all errors when in fact we have not.  We call this 

“undercorrecting” because some errors remain after the 

initial correction. We will now derive the probability that 

such an event occurs. 

We can model bit errors as a random process in which 

with some probability p we flip each bit in our data. [14]  

This is equivalent to X=Binomial(n,p), where n is the 

number  of corruptible bits. In our case, there are n=248 bits 

(The 232 message bits plus 16 CRC bits) .  E[x]=np is 

between 1 and 1.5 since [2] tells us that around 50% of bit 

errors are single-bit errors.  We would like to know the 

probability that the server responds that our guess is 

correct(event A).  This is the probability that the table has an 

entry and the bit in the table is one of the bits that was 

flipped originally. We do not care about the case where 

X=0, since we are assuming for argument’s sake an 

infalliable CRC. If X is 1, we know that the table has an 

entry (because of how it is constructed) and that entry is 

correct (since we have only a 1-bit error). happen, If x is 

greater than 1, we know that the probability that the table is 

full is independent of the probability that the bit chosen is 

correct.  The probability the table entry chosen has a value is 

the number of entries in the table over the table size (we 

have assumed a uniform distribution of errors).  The 

probability the bit is flipped is the number of bits chosen, k, 

over the total number of possible bits, 248.  Hence:  
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Pr 𝐴 = Pr 𝑥 = 1 +  
248

216
× Pr 𝑥 = 𝑘 ×

𝑘

248

248

𝑘=2
 

=Pr 𝑥 = 1 +
1

216
 𝑘 Pr 𝑥 = 𝑘 248

𝑘=2  

=Pr 𝑥 = 1 +
1

216 (𝐸 𝑘 − 1 Pr 𝑥 = 1 − 0 Pr 𝑥 = 0 ) 

=Pr 𝑥 = 1 +
1

216 (𝑛𝑝 − Pr 𝑥 = 1 ) 

Notice that either x is one and we have corrected our data 

correctly, or we undercorrect our data.  The probability of 

under-correcting our data is 
1

216 (248𝑝 − Pr 𝑥 = 1 ), which 

is around  
1

216  since np is about 1.5 and Pr[x=1] is around .5 . 

Thus the probability of under-correcting our data is only 
1

216  

with our protocol, which is acceptably small compared to 

the probability that the CRC fails to detect the error in the 

first place. 

 

VI. MULIPLE-BIT ERROR CORRECTION 

A. Motivation 

 
Figure 4. TinyOS Packet Format (sizes in bytes) 

As shown in Fig. 4, TinyOS [7] uses a message format 

that allows at most 29 data Bytes (232 data bits) but 16 CRC 

bits.  We found that the generator polynomial used in the 

IEEE 802.15.4 standard, x
16

+x
12

+x
5
+1, is usable for single-

bit-error correction over this message length.   However an 

8-bit CRC would already be sufficient to correct single bit 

errors in up to 2
8
-1-8=247 bits of data.  For formats such as 

TinyOS’ which use a longer CRC, we can use the extra 

information provided by the CRC to correct multiple 

erroneous bits.    

B. Implemenation and Analysis 

In order to perform multiple bit error correction, one 

needs a CRC of length n such that 2
n 
is much larger than the 

maximum message length L. In fact, to perform k-bit error 

correction, 2𝑛 𝐿
1
 +   𝐿

2
 + ⋯ +  𝐿

𝑘
 .  The reason for this 

is that the CRCs of 1,2,..k-bit corrupted zi’s must be unique, 

so that our table mapping is injective.  Once we have a table 

T with such a unique mapping, we may proceed with the 

SCC protocol, with the difference being that our table can 

indicate that several bits are corrupted, and we must send k 

locations and k values to be verified.  Note that we will still 

receive only a confirmation or a resend, even if only one 

hypothesized error bit is incorrect. 

We tested all 16-bit CRC polynomials such that all one 

and two bit errors in 232 bits of data mapped to unique CRC 

values. Out of the 2
16

 possibilities, we found 64 polynomials 

that can correct for one and two bit errors, see Table 1. Fig. 

5 shows that as the maximum message (data) size increases, 

at first a very large number of possible polynomials exist, 

but this decreases quite abruptly after 113 bits of message 

(data) length,  and remains fairly constant until 240 bits, at 

which point it is not possible to perform two bit error 

correction with a 16-bit CRC. The exact reason for such 

abrupt decreases in polynomial availability is left for future 

work.  We also noticed that, in general, the polynomials that 

work for a given message length work for all lengths less 

than that, which explains why the graph is monotonically 

decreasing. 

We also modified our protocol such that the receiver may 

detect 1 or 2 bit errors and send the locations and values to 

the original sender. This causes only a minor increase in 

communication, and the runtime is not impacted. However, 

the size of the correction table is now 128 KB, as compared 

with 0.25KB for single-bit correction
1
.  The advantage of 

multiple-bit error correction is further reduced 

retransmissions. 

TABLE I.  LIST OF 64 CRC16 GENERATOR POLYNOMIALS THAT CAN 

CORRECT 1- AND 2-BIT ERRORS IN 232 BITS OF DATA.  

0000111000000111a 

0001100100110001 

0001110001101011 

0010000100001001 

0010010010101001 

0010010111010011 

0010011111111001 

0010101001001001 

0011001100111111 

0011010101011001 

0011011010010011 

0011111101010011 

0011111111001001 

0100010111101111 

0101011011110011 

0101100100110101 

0101101100101111 

0110111101100011 

0110111111101101 

0111000111100111 

0111001000110011 

0111010101011101 

0111100010110111 

0111100111001011 

0111101110111101 

0111110011111011 

1000000100000011 

1000110111101101 

1000111110100111 

1001001011011001 

1001001011110111 

1001001110000111 

1001010111111001 

1001011101001001 

1001100010011101 

1001110101010111 

1001111011010101 

1010001110001011 

1010011100111101 

1010110001110001 

1010110101101011 

1011011111011011 

1011111001111101 

1100000011100001 

1100000100000111 

1100001110010011 

1100100111001111 

                                                           
1
 Here is how these numbers were computed: For single-bit correction, we 

have 232 data bits and 8 CRC bits, for a total of 240 bits.  So there are 240 

potential bad indices, and we can represent the index number with 8 bits.  A 
CRC-8 correction table has 2^8 rows of a byte each =.25KB.  

For double-bit correction, we have 232 data bits and 16 CRC bits, for a total 

of 248 bits.  So there are 248 potential bad indices, and we can represent the 
index number with 8 bits.  A CRC-16 correction table has 2^16 rows of a 

byte each =64KB.  But each entry in the table has two possible indices, so 

we have 128KB of space for the double-bit error correction table 



 

 
1100101111100011 

1100111100011101 

1101010101010111 

1101010101110011 

1101101000111101 

1101111010010011 

1110001000111111 

1110001110001111 

1110011100100111 

1110100010101111 

1110100110110101 

1110101000101111 

1110110101101111 

1110111101000101 

a. Coefficients of x15,x14, …, x0 are listed left to right, coefficient of x16 is always 1 

 

 
Figure 5. As the maximum message (data) size increases, the number of 

CRC polynomials for 1- and 2-bit error correction decreases. 

VII. DISCUSSION 

Related work about reducing the retransmission overhead 
by utilizing the corrupted packet includes [10, 11, 9]. In 
Partial Packet Recovery (PPR) [11], the receiver measures 
confidence values for the correctness of each bit in decoding, 
and requests for retransmission only those bits that are likely 
in error. In SOFT [10], the receiver stores the confidence 
values of the corrupted packet and combines it with the 
retransmitted packet, thereby improving packet reception 
probability. In the ZERO retransmission scheme [9], 
baseband level network coding is used to mix the 
retransmitted packet with the next packet. Our work is 
different since (1) our schema does not depend on a next 
packet and (2) our error-correcting CRC need less 
computational resources and energy. 

ZigZag decoding [8] avoids retransmissons - that are 
caused by collisions - by decoding the non-overlapping 
pieces. Our work is different since (1) our errors do not have 
to be caused by collisions and (2) our error-correcting CRC 
needs less computational resources and energy. 

Reed-Solomon Error Correction is a widely used 
correction scheme, however one of its faults is that it fails to 
efficiently correct or detect errors above a certain corruption 
level. [12] Thus many network architectures Hybrid ARQ 
(HARQ) protocol, which employs Reed-Solomon error 
correction in conjunction with a detecting CRC. [13] This 
allows the network to be able to correct small errors, but also 
detect high-error situations that Reed-Solomon cannot 
correct. However, our protocol uses only the CRC, thus 

avoiding the extra Reed-Solomon repetition needed by the 
HARQ detection-correction scheme. 

VIII. CONCLUSION 

Wireless communication faces transmission errors, but 
reducing retransmission can extend the lifetime of energy-
constrained sensor networks. Our main contributions are 
summarized as follows: 

 It is possible to correct errors using CRCs already 
present in sensor networks. Error correction can 
drastically reduce communication as resending 
information becomes necessary less frequently.  

 We presented a simple and effective send-check-confirm 
(SCC) protocol that reduces retransmission, but 
reliability is not sacrificed since corrections are 
validated. The mechanism is very similar to the HTTP 
protocols’s “304 Not Modified” message (indicating that 
resending the document is not necessary). 

 Many 16-bit CRC polynomials, including x
16

+x
12

+x
5
+1 

which is used by IEEE 802.15.4 and TinyOS, can 
correct 1-bit errors in up to 240 bits of data. Correcting 
bit errors is worthwhile, considering that in a study of 
IEEE 802.15.4 “around 50% of errors are isolated to a 
single bit, and 60% of burst errors are only two bits 
long” [2]. 

 We found 64 candidate polynomials for 16-bit CRC that 
can correct for 1- and 2-bit errors in less than 240 bits of 
data. Since TinyOS’ message format allows up to 232 
bits of data, we recommend the use of one of these CRC 
polynomials. 

 The number of generator polynomials that work for 
multiple-bit error correction is rather sparse as the 
message (data) size increases. 

Future research can be pursued in the following 
directions: a thorough experimental evaluation of the SCC 
protocol, optimization of the tabular method such as that 
proposed in [4], modifying existing protocol stacks (e.g. 
TinyOS [7] or SunSPOT [6]) and investigating table space/ 
time tradeoffs. 
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