
Example Solutions to Exercises on Topics of ICS141

Kazuo Sugihara
Department of Information and Computer Sciences

University of Hawaii at Manoa
Honolulu, Hawaii, U.S.A.

August 15, 2013

Abstract

This handout presents example solutions to exercises on topics covered in ICS141 (such
as proving techniques, mathematical induction, finite series and asymptotic notations). It does
not intend to overview all topics addressed in ICS141. Instead, it aims at showing students
examples for them learning (a) how to solve problems anticipated in theoretical computer
science, (b) how to present solutions to the problems and (c) how to typeset the solutions by
using LaTeX.

1 Review of Asymptotic Notations and Finite Series
There are four asymptotic notations discussed in ICS141 [1, 2].

(a) Upper Bound: “Big-Oh” notation f(n) = O(g(n)) or f(n) ∈ O(g(n))

(b) Lower Bound: “Big-Omega” notation f(n) = Ω(g(n)) or f(n) ∈ Ω(g(n))

(c) Tight Bound: “Theta” notation f(n) = Θ(g(n)) or f(n) ∈ Θ(g(n))

(d) Dominated Upper Bound: “little-oh” notation f(n) = o(g(n)) or f(n) ∈ o(g(n))

For a given algorithm, we always attempt to derive a tight bound in the Θ notation. A few
examples of proving a tight bound are given below.

Definition 1. f(n) = O(g(n)) iff ∃c ∈ R ∃N ∈ Z+ [∀n ∈ Z+ [n ≥ N → f(n) ≤ c|g(n)|]]

Definition 2. f(n) = Ω(g(n)) iff ∃c ∈ R ∃N ∈ Z+ [∀n ∈ Z+ [n ≥ N → c|g(n)| ≤ f(n)]]

Definition 3. f(n) = Θ(g(n)) iff f(n) = O(g(n)) ∧ f(n) = Ω(g(n))

By Definition 3, one way to prove a tight bound is to prove two assertions (i.e., an upper bound
and a lower bound) separately. To prove each of the two bounds requires to give concrete values
of the two constants c and N satisfying the corresponding inequality.

Definition 3 can be rephrased as follows.

1

Definition 4.
f(n) = Θ(g(n)) iff ∃c1 ∈ R ∃c2 ∈ R ∃N ∈ Z+ [∀n ∈ Z+ [n ≥ N → c1|g(n)| ≤ f(n) ≤
c2|g(n)|]]

This definition suggests another way to prove a tight bound that is to give concrete values of
the three constants c1, c2 and N satisfying the two inequalities in Definition 4.

Ex.1 Prove or disprove 2x2 + x− 7 = Θ(x2).
(Section 3.2 Ex.30 in p.217 of the Rosen’s textbook [1] for ICS141)

Theorem 1. 2x2 + x− 7 = Θ(x2)

Proof. Let c1 = 2, c2 = 3 and N = 7.
c1|x2| = 2x2 ≤ 2x2 + x− 7 for all x ≥ N since 7 ≤ x for all x ≥ N
2x2 + x− 7 < 2x2 + x < 2x2 + x2 = 3x2 = c2x

2 for all x ≥ N

Ex.2 Prove or disprove x log x = Θ(x2).

Theorem 2. x log x = Θ(x2) is false.

Proof. We disprove the tight bound by proving x log x = o(x2).

lim
x→∞

x log x

x2

= lim
x→∞

log x

x

= lim
x→∞

d
dx

log x
d
dx
x

by L‘Hôspital’s Rule

= lim
x→∞

1
x

1
since d

dx
log x = 1

x

= lim
x→∞

1

x
= 0
Thus, by the definition of the little-oh notation, x log x = o(x2) holds. Since f(n) = Ω(g(n)) and
f(n) = o(g(n)) cannot hold simultaneously, the tight bound x log x = Θ(x2) does not hold.

Ex.3 Prove or disprove
n∑

i=1

i(i− 1) = Θ(n3).

Theorem 3.
n∑

i=1

i(i− 1) = Θ(n3)

Proof. We first simplify the summation.

2

n∑
i=1

i(i− 1)

=
n∑

i=1

(i2 − i)

=
n∑

i=1

i2 −
n∑

i=1

i

=
n(n + 1)(2n + 1)

6
− n(n + 1)

2

by closed formulas for the finite series in Section 2.4 Table 2 (p.166) of the Rosen’s Textbook [3]

=
2n3 + 3n2 + n− 3(n2 + n)

6

=
2n3 − 2n

6

=
n3 − n

3

Next, we show an upper bound O(n3) as follows.

n3 − n

3
≤ n3

3
=

1

3
n3 = c|n3| for all n ≥ N where c =

1

3
and N = 1.

Next, we show a lower bound Ω(n3) as follows.

n3 − n

3
=

n3

3
− n

3
=

n3

6
+

(n3 − 2n)

6
>

n3

6
for all n ≥ 2 since n3 > 2n for all n ≥ 2

Thus,
n3 − n

3
≥ c |n3| holds for all n ≥ N , where c =

1

6
and N = 2.

Therefore, the tight bound
n∑

i=1

i(i− 1) = Θ(n3) holds.

Ex.4 Prove or disprove ln(x2 + 1) = Θ(lg x).

Theorem 4. ln(x2 + 1) = Θ(lg x)

Proof. We first convert the natural logarithm ln to lg, i.e., the base of logarithm is converted from

e to 2 by using the following fact (See Appendix 2 Theorem 3 loga x =
logb x

logb a
in p.A-8 [4]).

ln(x2 + 1) =
lg(x2 + 1)

lg e
where e is the base of the natural logarithm called the Napier constant

Next, we prove an upper bound.

lg(x2 + 1)

lg e
≤ lg(x2 + x2)

lg e
for all x ≥ 1 since 1 ≤ x2 for all x ≥ 1

3

=
lg(2x2)

lg e
for all x ≥ 1

=
lg 2 + lg x2

lg e
for all x ≥ 1 since logb xy = logb x+ logb y for all b > 1, x > 0 and y > 0

=
lg 2 + 2 lg x

lg e
for all x ≥ 1 since logb x

r = r logb x for all b > 1, x > 0 and r ∈ R

≤ lg x + 2 lg x

lg e
for all x ≥ 2 since lg 2 ≤ lg x for all x ≥ 2

=
3 lg x

lg e
for all x ≥ 2

= c2 | lg x| for all x ≥ N , where c2 =
3

lg e
and N = 2

Thus, the upper bound ln(x2 + 1) = O(lg x) holds.
Next, we prove a lower bound.

ln(x2 + 1)

≥ lnx2 for all x ≥ 2 since lnx is a monotonically increasing function

= 2 ln x for all x ≥ 2 since logb x
r = r logb x for all b > 1, x > 0 and r ∈ R

=
2 lg x

lg e
for all x ≥ 2 by the base conversion

= c1 | lg x| for all x ≥ N , where c1 =
2

lg e
and N = 2

Thus, the lower bound ln(x2 + 1) = Ω(lg x) holds.
Therefore, the tight bound ln(x2 + 1) = Θ(lg x) holds.

Ex.5 Prove or disprove
n∑

i=1

1

2(i + 1)
= Θ(n lg n).

Theorem 5.
n∑

i=1

1

2(i + 1)
= Θ(n lg n)

Proof. We first simplify the summation.
n∑

i=1

1

2(i + 1)
=

1

2

n∑
i=1

1

i + 1
=

1

2

n+1∑
j=2

1

j

Next, we prove the following lemma.

Lemma 1.
n∑

j=2

1

j
= Θ(lg n)

Proof for Lemma 1. We first prove an upper bound.

4

n∑
j=2

1

j

≤
∫ n

1

1

x
dx

= lnn− ln 1
= lnn since ln 1 = 0

=
lg n

lg e
by the base conversion

= c2 | lg n| for all n ≥ N , where c2 =
1

lg e
and N = 2

Next, we prove a lower bound.
n∑

j=2

1

j

≥
∫ n

2

1

x
dx

= lnn− ln 2
> lnn− 1 since ln 2 < 1

=
lg n

lg e
− 1 by the base conversion

>
lg n

2
− 1 since 1 < lg e < 2

=
lg n

4
+ (

lg n

4
− 1)

≥ lg n

4
for all n ≥ 16 since lg n ≥ 4 for all n ≥ 16

= c1 | lg n| for all n ≥ N , where c1 =
1

4
and N = 16

Therefore, the tight bound holds.

Let c1 =
1

4
, c2 =

2

lg e
and N = 16. By Lemma 1, the following holds for all n ≥ N .

c1| lg n| =
1

4
lg n ≤ 1

2

n∑
j=2

1

j
<

1

2

n+1∑
j=2

1

j
=

1

2

n∑
j=2

1

j
+

1

n + 1
≤ 1

lg e
lg n +

1

n + 1
<

1

lg e
lg n + 1

<
1

lg e
lg n +

1

lg e
lg n =

2

lg e
lg n = c2| lg n| since

lg n

lg e
> 1 for all n ≥ N .

Thus, the tight bound holds.

5

2 Review of Proof by Induction
Consider Ex.18 (p.371) in Section 5.4 of the Rosen’s textbook [5] for ICS141. The exercise is
rephrased as follows.

“ Prove by induction on n that the following recursive algorithm factorial cor-

rectly computes the factorial n! that is inductively defined as 0! = 1 and n! =
n∏

i=1

i for

n > 0. ”

function factorial(n: integer): integer;
// Given a nonnegative integer n, return the factorial n!.
if n = 0 then return 1
else return n× factorial(n− 1)

2.1 Partial Correctness
An algorithm is said to be partially correct if the algorithm produces a correct output when its
execution terminates. The partial correctness will be discussed more rigorously in ICS241 and
ICS311.

Informal Proof

Here is an informal proof that is sufficient in the context of ICS141.

Theorem 6. The algorithm factorial n outputs n! for every nonnegative integer n when the
algorithm terminates.

Proof. Suppose that the algorithm factorial terminates for every input. Let factorial(n)
denote its return value for input n. We prove factorial(n) = n! by induction on n.

Basis: n = 0
The algorithm executes the then clause and returns 1. By the definition of n!, 0! = 1. Thus,
factorial(0) = 0! holds.

Inductive Step: n > 0
Assume an induction hypothesis “factorial(n) = n! for n = k − 1.” Consider n = k.
Since n > 0, the algorithm executes the else clause and returns n × factorial(n − 1).
Since n − 1 = k − 1, the induction hypothesis can be applied to factorial(n − 1). Hence,
factorial(n) = n× factorial(n− 1) = n× (n− 1)! = n! holds.

Thus, factorial(n) = n! is true for all n ≥ 0 when it terminates. Therefore, the algorithm
correctly computes the factorial n! whenever it terminates.

6

2.2 Total Correctness
An algorithm is said to be totally correct if it satisfies the following two properties.

• Partial Correctness: The algorithm is partially correct.

• Finite Termination: For every input instance, the algorithm produces an output and termi-
nates within a finite number of instructions executed.

Theorem 7. For every input n ≥ 0, the algorithm factorial always produces an output and
terminates within a finite number of instructions executed.

Proof. Since the algorithm factorial consists of only a single “if-then-else” statement and
returns a value in each of the then and else clauses of “if-then-else” statement, it is obvious that
the algorithm factorial always produces an output for every input n ≥ 0.

We first show that the algorithm factorial invokes exactly n recursive calls.

Lemma 2. For every input n ≥ 0, the algorithm factorial invokes exactly n recursive calls.

Proof for Lemma 2. Let f(n) be the number of recursive calls invoked by factorial(n). By
the construction of the algorithm factorial, we construct the following recurrence system on
f(n).

• Initial Condition: f(0) = 0

• Recurrence Relation: f(n) = f(n− 1) + 1

By repeatedly applying the recurrence relation to a recurrence term in the right-hand side, it is
easy to get the solution f(n) = n and verify the solution by using a proof by induction. More
techniques for solving recurrence systems will be discussed in ICS241.

Next, we show that an argument n of the algorithm factorial eventually reaches 0, since the
argument n is decrement by 1 every time a recursive call is made. The algorithm factorial(0)
obviously terminates without any more recursive call.

Hence recursion of factorial(n) always terminates after it invokes n recursive calls.

Since the algorithm factorial consists of only a single “if-then-else” statement, it executes
at most a constant number of instructions in each recursive call. Hence, the total number of instruc-
tions executed by factorial is Θ(n) for input n. Thus, it becomes obvious that the algorithm
factorial terminates within a finite number of instructions executed.

The following corollary follows Theorems 6 and 7.

Corollary 1. The algorithm factorial is totally correct with respect to the initial assertion
n ≥ 0 and the final assertion factorial = n!.

7

3 A Summary of Concepts and Techniques in ICS141
Although everything in ICS141 is important as prerequisites of computer science courses, here is
a summary of mathematical concepts and techniques in ICS141 that are especially crucial to the
design and analysis of algorithms.

Section # (7th Ed.) Topics Major Usage
Sections 1.7–1.8 Proof Methods Design & Analysis
Sections 2.1–2.2 Sets Modeling & Design
Section 2.3 Functions Modeling & Design
Section 2.4 Sequences, Summation, Finite Series Modeling & Analysis
Sections 3.2–3.3 Asymptotic Notations Analysis
Sections 4.1–4.6 Basics of Number Theory Modeling & Design
Section 2.6 Matrices Modeling & Design
Sections 5.1–5.2 Proof by Induction Design & Analysis
Section 5.3 Inductive Definitions, Recursive Definitions Modeling & Design & Analysis
Section 5.4 Recursive Algorithms Design
Section 5.5 Hoare Logic for Verification Design & Analysis
Sections 6.1,6.3,6.5 4 Basic Counting Methods (Permutation,

Combination, Sample, Selection),
Analysis

Sections 6.2,6.4 Binomial Coefficients, Pigeonhole Principle Analysis
Sections 7.1–7.2 Basics of Probability Theory Analysis
Section 7.3 Bayes’ Theorem Analysis
Section 7.4 Expected Value, Variance Analysis

References
[1] Kenneth H. Rosen, Discrete Mathematics and Its Applications, 7th ed., New York, NY:

McGraw-Hill, 2012, Chapter 3, Section 3.2, pp.204–218.

[2] Kazuo Sugihara. (2007, Oct. 1). ICS141 Lecture Notes #11. Dept. of Information and Com-
puter Sciences, University of Hawaii at Manoa. Honolulu, HI. [Online]. Available:
http://pearl.ics.hawaii.edu/∼sugihara/courses/ics141f07/notes/10-01n11.html#S3

[3] Kenneth H. Rosen, Discrete Mathematics and Its Applications, 7th ed., New York, NY:
McGraw-Hill, 2012, Chapter 2, Section 2.4, p.166.

[4] Kenneth H. Rosen, Discrete Mathematics and Its Applications, 7th ed., New York, NY:
McGraw-Hill, 2012, Appendix 2, p.A-8.

[5] Kenneth H. Rosen, Discrete Mathematics and Its Applications, 7th ed., New York, NY:
McGraw-Hill, 2012, Chapter 5, Section 5.4, p.371.

[6] Kenneth H. Rosen, Discrete Mathematics and Its Applications, 7th ed., New York, NY:
McGraw-Hill, 2012, Chapter 5, Section 5.5, pp.372–377.

8

[7] Kazuo Sugihara. (2007, Oct. 22). ICS141 Lecture Notes #17. Dept. of Information and Com-
puter Sciences, University of Hawaii at Manoa. Honolulu, HI. [Online]. Available:
http://pearl.ics.hawaii.edu/∼sugihara/courses/ics141f07/notes/10-22n17.html#S2

9

