
Parallel Algorithms Spring 2022

Problem Set 4
Prof. Nodari Sitchinava Due: Wednesday, March 2, 2022 at 9am

You may discuss the problems with your classmates, however you must write up the solutions on your
own and list the names of every person with whom you discussed each problem.

Start every problem on a separate page. Any problem submitted by 11:59pm Friday February
25, 2022 will receive an additional 10% of the score you receive on that problem.

1 Parallel Search (50 pts)

In lecture we have learned how to search for some value x in a multiway (p + 1)-way tree in O(logp+1 n)
time using p processors. We also saw a relationship between binary search in a sorted array and a search in
a balanced binary search tree (BST). There is a similar relationship between parallel (p + 1)-way searching
in a sorted array and searching in a balanced multiway (p + 1)-way search tree. In this problem you will
design a parallel algorithms to search for a value x in a sorted array in O(logp+1 n) time and O(p logp+1 n)
work without constructing the search tree.

Recall the definition of a (p+1)-way search tree: Each node v of the search tree contain p keys, key[1..p],
and p+ 1 pointers to p+ 1 children, child[0..p]. Then in a valid (p+ 1)-way search tree, every node v stores
in the subtrees rooted at the i-th child, the following elements:

• All keys stored in the subtree rooted at child[0] are smaller or equal to key[1].

• If 1 ≤ i ≤ p − 1, all keys stored in the subtree rooted at child[i] are greater than key[i] and smaller
than or equal to key[i + 1]

• All keys stored in child[p] are greater than key[p].

(a) (10 pts) One way to search in a sorted array of items is to first construct a balanced (p + 1)-way
search tree on the elements of the array. Given a sorted array A[1..n] of n items, which elements of
A will be in the root of the tree? Make sure your answer works for any p, not just a multiple of n,
including p > n.

(b) (10 pts) Let A[l] = key[i] and A[r] = key[i+ 1] in a node v of a search tree. Which elements of array
A would be stored in the subtree rooted at child[i] of v?

(c) (30 pts) Design an (p+1)-way searching algorithm on a sorted array without explicitly constructing
the search tree. Write down the pseudocode and prove its correctness. Analyze the time of your
algorithm if it were implemented in a p-processor CREW PRAM model. Hint: generalize binary
search to (p + 1)-way search using the information from parts (a) and (b).

multiwaySearch(x,A[l..r], p) . Returns the largest index i, such that A[i] ≤ x
.
.
.
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2 Parallel Merging (50 pts)

In lecture we have seen a work-efficient merging algorithm that runs in T (n) = O(log n) time and W (n) =
O(n) work. To achieve these bounds, the algorithm ensured that each subproblem that was solved sequen-
tially at the base case was on subarrays Bi and Ci of size at most log n elements, each. However, each
Bi or Ci could be smaller than log n elements, resulting in some processors doing less work than others.
While asymptotically speaking it results in T (n) = O(log n) time, constant factors do matter in practice
and, ideally, each processor would perform exactly the same amount of work. In this problem you will design
a merging algorithm where the work among the processors is perfectly balanced, i.e., each processor will
(sequentially) merge the subarrays Bi and Ci, such that |Bi|+ |Ci| = log n. That is the output array Ai of
each processor will have exactly log n elements.

Let B and C be two sorted arrays, each containing n elements.

(a) (5 pts) Write down pseudocode for a sequential algorithm to merge the two arrays into another
array A of size 2n. Your algorithm should run in time T1(n) = O(n) time.

(b) (15 pts) Let A = B∪C be the merge of B and C and let x be the median of A, i.e., rank(x,A) = n.
Design an O(log n)-time sequential algorithm to find x without computing A. Your algorithm
should find the indices i = rank(x,B), and j = rank(x,C). Note that your algorithm doesn’t know
the value of x, but only its rank in A.

Write down the pseudocode for your algorithm, prove its correctness, and analyze its running time.
Don’t forget to state your invariant/inductive hypothesis before using/proving it.

Hint: Use binary search. That is start with i =
⌈
n
2

⌉
and j =

⌈
n
2

⌉
and reason about where x can and

cannot be in B and C relative to B[i] and C[j]. To solve this problem, you should understand why
binary search works and use a similar argument.

(c) (5 pts) Design a parallel algorithm for 2 processors that merges the arrays A and B into another

array C and runs in time T2(n) = T1(n)
2 + O (log n). Analyze the running time of your algorithm.

(Hint: use the median computation from part (b) to make sure that each processor compares at most n
elements during the merging step.)

(d) (10 pts) Now let x be the k-th smallest element in A = B ∪ C, instead of the median. Design an
O(log n)-time sequential algorithm to find the indices i = rank(x,B), and j = rank(x,C) without
knowing the value of x and without computing A. Write down the pseudocode, prove its correctness
and analyze its running time. Hint: generalize your solution in part (b).

(e) (10 pts) Design a parallel algorithm that computes the merged array A = B ∪ C in time
⌈
T1(n)

p

⌉
+

O(log n) using p processors. Analyze the running time of your new algorithm. Hint: Generalize your
solution in part (c) to work with p processors, instead of just 2.

(f) (5 pts) What is the maximum value of p for which your algorithm in part (e) remains work-optimal?
What does this mean about the time T (n) and work W (n) of your merging algorithm (without the
mention of p)?
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