
ICS 621: Analysis of Algorithms Spring 2021

Lecture 11

Prof. Nodari Sitchinava Scribe: In Woo Park, Darlene Agbayani, Michael Rogers

1 Overview

In the last lecture, we introduced computational geometry and discussed the algorithm for finding
convex hull of a set of points in R2. In this lecture, we introduce two new problems with applications
to computational geometry: line segment intersection reporting and Voronoi diagrams. As we will
show, both of these problems can be solved efficiently using the plane sweep technique.

Algorithm 1

1: Slow-CH(S)
2: E ← ∅
3: for every pair (p, q) in S × S such that p 6= q
4: valid← true
5: for each r in S such that r 6= p & r 6= q
6: if r is to the left of −→pq
7: valid← false

8: if valid == true
9: E.add(−→pq)

10: Sort points in E in clockwise order
11: return E

What is the runtime of this algorithm? The outer for loop iterates once for every pair of points.
There are O(n2) such pairs. The inner loop then iterates once for each point, for O(n) iterations.
This gives us a total runtime of O(n3). Sorting the points clockwise can be performed in O(n2)
time, but finding for each segment si, the other segment sj , whose starting point is equal to the
ending point of si. So the overall runtime of the algorithm is O(n3). Tractable, but we can do
better.

Instead of checking every possible pair of points for inclusion in the convex hull, we can just
construct the hull incrementally. Such an algorithm is known as an incremental construction
algorithm.

1

Algorithm 2 Computes the upper hull of a set S of points in the plane

1: Upper-CH(S)
2: E ← ∅ . will store a convex hull of points seen so far
3: Sort points in S by their x-coordinates . giving us {p1, p2, ..., pn}
4: E.add(p1)
5: E.add(p2)
6: for i = 3 to n
7: E.add(pi)
8: k ← E.size
9: while k ≥ 3 & E[k] is to the left of

−−−−−−−−−−−−−→
E[k − 2], E[k − 1] . last three points make a left

turn
10: E[k − 1]← E[k] . remove the next to last point from E
11: E.size← E.size− 1
12: k ← k − 1

13: return E

The above algorithm only returns the upper portion of the convex hull of S, but an algorithm to
construct the lower half is symmetric.

So what is the runtime of this algorithm? We have a for loop that iterates O(n) times, as well
as a while loop that appears to iterate a possible O(n) times as well. This would give a runtime
of O(n2). However, if we realize that each point in S can only be added to E at most once and
removed at most once, it becomes clear that the total work of the for loop is only O(n). Since the
initial sorting of the input points by their x-coordinates takes O(n log n) time, our total runtime is
O(n log n).

Now that we have an algorithm that runs in O(n log n) time, can we do even better?

Lemma 1. The convex hull problem has a lower bound of Ω(n log n).

Proof. To show that convex hull takes at least O(n log n) time, we can reduce the problem of sorting
to the convex hull problem using the following linear time algorithm.

Algorithm 3 Sorts A in increasing order via Convex Hull computation

1: CH-Sort(A)
2: P ← ∅
3: for i = 1 to n
4: P.add((A[i], A[i]2))

5: C ← Lower-CH(P)
6: for i = n downto 1
7: output C[i].x coord

The set of points P forms a parabola, and since a parabola is convex and our convex hull algorithm
outputs the clockwise sorted points forming the hull, our inputs are now sorted in ascending order.
We know that sorting has a lower bound of Ω(n log n). Therefore, the convex hull problem also has
lower bound of Ω(n log n).

2

Actually, the fastest known convex hull algorithm takes O(n log h) time, where h is the number of
points in the convex hull (an example of an output-sensitive algorithm). Doesn’t this contradict
our previous proof that a convex hull takes O(n log n) time to compute? In our reduction above,
every point passed into the convex hull algorithm was on the (convex) parabola, and therefore on
the convex hull. If we used such a O(n log h) algorithm to solve sorting, h would be equal to n, and
we would still need Ω(n log n) time to sort.

2 Line Segment Intersection Reporting

Geographical maps are often made up of multiple layers which are overlapped depending on what
type of information should be displayed. For example, a map may store roads in one layer and
rivers in another. If the layers are overlapped, intersections of roads and rivers may serve as points
of interest. This concept of finding intersections can be further expanded into higher dimensions
and even abstract values such as population and weather. However, by considering only one or two
dimensions, this problem can be reduced to finding intersections of line segments.

2.1 Problem Statement

Given a set S of n closed segments in a 2D plane, report all intersection points among the segments
in S.∗

Figure 1: Set of line segments with 3 intersection points (highlighted in green)

A simple way to solve this problem is to take every pair of lines in S and check whether or not
they intersect. If there are n segments in S, this algorithm would take O(n2) time. Furthermore,
it could be the case that every pair of segments in S is overlapped in some way. In such a case, we
must report Ω(n2) intersections anyways. However, it is unlikely that this occurs often, especially
in practice, so we would like to find a faster algorithm. The best we can do is to find segment
intersections in a way that is dependent on the number of line segments in S as well the number
of intersections that must be reported. This type of algorithm falls into a class of algorithms
called output-sensitive algorithms. If the segments in S contain k intersections, the runtime of
an optimal algorithm for finding intersections is given as O(k + log n). However, we will show a
simpler algorithm that solves this problem in O((k+n) log n) and still demonstrates the plane-sweep
technique.

∗For simplicity, we assume no degenerate cases such as vertical and collinear segments

3

2.2 2D Plane Sweep

In order to avoid checking every pair of segments for an intersection, we make an observation: only
segments that are neighbors of eachother are candidates for intersection. Let S be an arbitrary set
of line segments. First, sort the segments by their y-coordinates. Once sorted, it is easy to check
if the segment’s y-intervals overlap. Only segments with overlapping y-intervals are considered
neighbors and have possible intersections.

y

x

Figure 2: Segments sorted by y-coordinate

After finding the segments with overlapping y-coordinates, we must find which of those actually
intersect. Starting above the highest segment, use an imaginary line, `, to sweep downward and keep
track of all segments intersecting ` at a given time. Segments exist on a continous set of coordinates,
but we do not sweep ` down continuosly. ` only stops at “event” points. More specifically, once `
sweeps past and has processed any event point, nothing above `’s current position matters.

We define three types of event points:

nosep the top endpoint of a segment,

nosep the bottom endpoint of a segment,

nosep intersection points.

If a top endpoint is found, then a new line segment has begun to intersect `, and we must check if
it intersects any of the segments that were already intersecting `. If a bottom endpoint is found,
then ` is no longer intersecting the line segments below `, and we no longer need to keep track of
it.

4

`

Figure 3: ` finding and stopping at an event point (highlighted in green)

Algorithm 4

1: function FindIntersection(S)
2: Q← MaxPriorityQueue()
3: Insert all segment endpoints e into Q with key = y-coordinate of e
4: while Q is not empty
5: e← Remove(Q)
6: HandleEventPoint(e)

The pseudocode (Algorithm 4) for finding intersections is fairly simple. We maintain a max-
priority queue to keep track of segment endpoints in order of y-coordinate. We begin extracting
the endpoints (by “sweeping” `) one at a time and updating the set of segments intersecting `.
As we mentioned earlier, we must keep track of all segments currently intersecting `. This is done
with a binary search tree, which we will call T . T will be used to keep track of only the segments
currently intersecting ` and is ordered by the x-coordinate of the segment.

sk

si

sj

sl sm

si

sj

sl

sk

T

`si sj sk sl sm

Figure 4: Line sweep with corresponding BST

Notice that if ` intersects every segment in S, then we may still need to check all O(n2) pairs
of segments for intersection. However, by ordering all the endpoint events in T by x-coordinate,
only neighboring segments need to be checked for an intersection. A segment’s earliest intersection
can only occur with its left neighbor or right neighbor. Therefore, processing any event requires
checking ≤ 2 neighboring segments in T .

HandleEventPoint does the main work of processing the three types of event points mentioned
above. When finding endpoints of segments, we must insert or delete from T . We must also check
for intersections when finding a new top endpoint and insert the intersection point into Q to be
processed when ` passes through it. When an intersection is processed, one segment has crossed
with another, and, therefore, their order by x-coordinate must have swapped. This change must

5

also be reflected in the ordering of T . For inserting and deleting segments as well as segments
swapping order in T , we must then check again for intersections with neighbors, since the segments
will have new neighbors.

p
`

si sj

Figure 5: At intersection event p, the ordering of si and sj will switch in regards to x-coordinate

Invariant: All intersections above the sweep line ` have been reported.

2.3 Runtime Analysis

In total, there are at most 2n+k events in the max-priority queue. If S contains n segments, there
are 2n endpoints, and k is the number of intersections formed by S. Extracting and processing
2n+ k events, we incur a cost of O(log(2n+ k)) per event. This is logarithmic, since we only need
to check a constant number (≤ 2) of segments for intersection, so the overhead is from extraction
and insertion from the priority queue and BST. The number of intersections is at most k ≤ n2,
therefore:

log(2n+ k) ≤ log(2n+ n2), if k ≤ n2

= O(log n).

Therefore, processing a set of n segments with k intersections, takes O((n+ k) log(n)) time.

3 Voronoi Diagrams (The Post Office Problem)

Given a set with n distinct points (sites or post offices) P = {p1, . . . , pn} in the xy-plane, partition
the plane into n cells, one for each p ∈ P , such that a point q lies in cell V(pi) if and only pi is
the closest site to q, i.e., dist(q, pi) < dist(q, pj) for all i 6= j. The set of all cells is called Voronoi
diagram. Voronoi diagrams have many applications in social geography, physics, astronomy, and
robotics.

Example

Let P = {p1, p2} be a set of points. The Voronoi diagram of P or Vor(P) is given by dividing the
plane into two halves with the bisector † line of p1 and p2.

†A bisector of a line segment p1p2 is the perpendicular line that bisects p1p2.

6

p1 p2

Figure 6: Vor({p1, p2}) = {h(p1, p2), h(p2, p1)}.

If we denote the (open) left half plane with h(p1, p2) and the right half plane with h(p2, p1), then
the Voronoi diagram can be written as Vor(P) = {h(p1, p2), h(p2, p1)}. Adding an additional point
p3 into P will change Voronoi diagram of Figure 6 to:

p1 p2

p3

Figure 7: Vor(P) = {h(p1, p2) ∩ h(p1, p3), h(p2, p1) ∩ h(p2, p3), h(p3, p1) ∩ h(p3, p2)}.

Note that any point in V(pi) has indeed pi as the closest site, and hence the following fact.

Fact 2. For P = {p1, . . . , pn} we have the Voronoi diagram given by V(pi) =
⋂

j 6=i h(pi, pj) for
i = 1, . . . , n.

Observe that we used bisectors to define boundaries between half planes, and therefore, the V(pi)
can be represented as collection of lines, half lines, or line segments. Notice that we only have full
lines when all sites in P are collinear, i.e., all points lie in the same line as shown in Figure 8.

p1 p2 p3

Figure 8: V(p1) = h(p1, p2), V(p2) = h(p2, p1) ∩ h(p2, p3), V(p3) = h(p3, p2)..

If all points are not collinear then there will be no boundaries that are full lines.

Theorem 3. Let P = {p1, . . . , pn} a set of distinct points. If all sites are collinear, then Vor(P)
consists of n− 1 parallel lines and n cells. Otherwise, Vor(P) is a connected planar graph and its
edges are either line segments or half-lines.

Proof. If all sites are collinear, then we can order the n points based on the line that connects all
of them. Hence, there are n− 1 parallel bisectors and n cells.

7

If not all lines are collinear, then for the sake of contradiction, assume e is a boundary that is a full
line, i.e., a bisector of pi and pj . Since not all points are collinear, there exists a site pk that is not
collinear with pi and pj . Both bisectors of pkpi and pkpj will intersect e, and therefore, some parts
of e will be closer to pk than pi or pj . Hence, e is not a boundary of either V(pi) or V(pj), i.e., isn’t
a full line – a contradiction. The connectedness follows from the fact that there is no edge e that
is a full line. See Figure 9 below:

pi pj

pk

e

Figure 9: Non-collinear points.

3.1 Complexity of Voronoi diagram

Each site in a Voronoi diagram can have at most n − 1 vertices and edges. Hence, at most, the
number of vertices and edges is quadratic. The next theorem shows that the complexity in terms
of edges and vertices of Voronoi diagram is actually linear.

Theorem 4. Vor(P) has at most 2n− 5 vertices and at most 3n− 6 edges.

Proof. We use Euler’s formula of a connected planar graph which states the following:

of vertices −# of edges + # of faces = 2.

Since a planar graph cannot contain half-lines and Vor(P) can have half-lines, we add one additional
vertex v∞ that terminates ends of all loose half-lines. Observing Figure 7, we know that each vertex
has degree is at least 3, and therefore, summing up the degrees of all vertices should be less than
twice the number of edges i.e. 2ne ≥ 3(nv + 1).

(nv + 1)− ne + nf = 2

(nv + 1)− ne + n = 2

(nv + 1)− 3

2
(nv + 1) + n ≥ 2

2(nv + 1)− 3(nv + 1) + 2n ≥ 4

2n− 5 ≥ nv (inequality for vertices)

(2n− 5) + 1− ne + n ≥ 2

3n− 6 ≥ ne. (inequality for edges)

8

Though we have estimated quadratic number of bisectors, we are restricted to only a linear number
of edges and vertices in a Voronoi diagram. Hence not all bisectors are in V(P) diagram, and not
all intersections of bisectors appear in V(P).

One way to compute the Voronoi diagram is to use Fact 2, and obtain all intersections of bisectors
which takes O(n log n) (see previous section). Since we have n points, the total cost is O(n2 log n).
The optimal solution for Voronoi diagram utilizes a plane sweep technique effectively to compute
Voronoi diagram in O(n log n) time by avoiding unnecessary computations.

3.2 Fortune’s algorithm to compute Voronoi diagram

The intuition of this algorithm lies on the the idea of a sweep line coming from y = +∞ downwards.
Whenever the sweep line ` intersects an event point, then some information about the structure is
maintained and small amount of information needs to be processed. For the Voronoi diagram, this
information is partial about the cells, because a cell might still depend on an event point below
the sweeping line. However, a cell, that is above the line and at a farther distance from sites below
` than ` itself, would no longer be affected by the sweeping process. Hence, we have an invariant
that can be used to justify that the sweeping process does compute the Voronoi diagram.

Invariant A cell V`(p) for a point p above ` (or p ∈ `+) does not change if for any point q ∈ V`(pi)
we have dist(q, pi) < dist(q, p′) for all p′ below ` (or p′ ∈ `−). Hence, V(p) = V`(p).

The distance from any point q ∈ `+ to the horizontal line ` at y = c depends on the y-coordinate
of q i.e. dist(q, `) = yq − c. In order for q to lie at the boundary distance between p and `, we
should have dist(p, q) = yq − c. The following analysis shows that the boundary between ` and p
constructs a parabola.

dist(q, p)2 = (xq − xp)2 + ((yq − c)− yp)2 = (yq − c)2

(xq − xp)2 + (yq − c)2 − 2(yq − c)yp + y2p = (yq − c)2

(xq − xp)2 + 2cyp + y2p
2yp

= yq (equation of a parabola)

`

p

q

y − c

y − c

Combining these parabolas of multiple sites above ` constructs a sequence of parabolic arcs which
we call a beach line as shown in Figure 10.

The beach line is the structure that we will maintain while sweeping down. The question remains
at what event points shall we process the beach line structure? The answer is when we construct
a new arc after the sweeping line reaches a new site below `, and when an arc disappears. We will
call such an event a site event.

Lemma 5. The only way in which a new arc can appear on the beach line is through a site event.

9

`

p1 p2

p3

beach line

Figure 10: An example of a beach line.

Proof. The intuition behind the proof is that there is no parabola arc that breaks through the
beach line. If there exists such arc β, then either β breaks through a bigger arc β′, essentially
touching it at one point before going deeper down. However that can never happen as β can only
intersect β′ at two locations which means β never breaks through β.‡

The other case β is breaking through two arcs α and γ with all sites above line ` as shown in the
Figure below:

`

α γ

β

For this to happen, β arc needs to touch the intersection point q of α and γ before going deeper
down. However, this creates a scenario where q is at the centre of a circle that touches the sites
of α, β and γ, and also the line ` (equidistant). When such alignment of three arcs happen at a
circle, we call such event a circle event.

`

α

β

γq

When ` takes a slight step down, a bigger circle is needed to accommodate all previous sites, but
that can never happen, as one site will be an interior point to the big circle, which means it has a
closer distance to ` than β site which means β never break through the beach line.

Circle event in the proof above, is when one arc β disappears from the beach line. Such an event
is important while processing the structure of beach line during sweeping. The next Lemma shows
the only way an arc in the beach line disappears.

‡Details of the algebraic proof are in chapter 7 page 151 in the Computational Geometry book [].

10

Lemma 6. The only way in which an existing arc can disappear from a beach line is through a
circle event.

Since we know the event points to either a new site, or a circle event, we are left with the task of
determining the data structure that maintains the information about the beach line and only small
part of that structure is accessed at each event point. As we did with line segment intersections in
the previous section, we maintain a priority queue for event points along with a BST to hold the
structure. Since both of these structures are balanced trees, we can predict the processing time to
be O(n log n).

11

