Spring 2024

Problem Set 0

Prof. Nodari Sitchinava

Due: OPTIONAL - DO NOT SUBMIT

You may discuss the problems with your classmates, however you must write up the solutions on your own and list the names of every person with whom you discussed each problem.

1 Binomial Trees (OPTIONAL - 0 pts)

A binomial tree B_k of order k is defined recursively as follows:

- A binomial tree B_0 of order 0 is a single node.
- For all k > 0, a binomial tree B_k of order k consists of two binomial trees of order k 1, with the root of one tree connected as a new *leftmost* child of the root of the other.

Binomial trees B_0 through B_4 look as follows:

Prove that for the binomial tree B_k ,

- 1. there are 2^k nodes,
- 2. the height of the tree is k,
- 3. there are exactly $\binom{k}{i}$ nodes at depth *i* for $i = 0, 1, \ldots, k$, and
- 4. the root has degree k, which is greater than that of any other node; moreover, as the Figure below shows, if we number the children of the root from left to right by k 1, k 2, ..., 2, 1, 0, then child i is the root of a subtree B_i .

Hint: use induction.

