

ICS 621: Analysis of Algorithms

Prof. Nodari Sitchinava

Computation Geometry

Computation Geometry

Computational problems on discrete geometric objects:

- Points
- Lines & line segments
- Planes
- Surfaces
- Circles/spheres

Computation Geometry

Computational problems on discrete geometric objects:

- Points
- Lines & line segments
- Planes
- Surfaces
- Circles/spheres

Applications:

- Computer graphics
- Geographic Information Systems (GIS)
- Computer Aided Design (CAD)
- Robotics
- **.**..

Points

p: (a, b)

Points

(Non-vertical) lines

$$\ell: y = mx + b$$

Points

(Non-vertical) lines

$$\ell : y = mx + b$$
slope y-intercept

Representation

Points

(Non-vertical) lines

$$\ell : y = mx + b$$
slope y-intercept

 $\ell: y = 2x - 2$

Representation

Points

(Non-vertical) lines

$$\ell : y = mx + b$$
slope y-intercept

$$\begin{pmatrix} a \\ b \end{pmatrix}$$

$$\begin{pmatrix} m \\ b \end{pmatrix}$$

Point
$$p = (a, b)$$

Line
$$\ell = (m, b)$$

General Position Assumption

No two points have the same y-coordinates (no vertical lines)

No three points are co-linear

General Position Assumption

No two points have the same y-coordinates (no vertical lines)

No three points are co-linear

• Input: Set of n points in \mathbb{R}^2

Output: Smallest convex polygon that contains all points

• Input: Set of n points in \mathbb{R}^2

Output: Smallest convex polygon that contains all points

• Input: Set of n points in \mathbb{R}^2

Output: Smallest convex polygon that contains all points

Polygon: circular sequence of points connected by line segments

• **Input:** Set of *n* points in \mathbb{R}^2

Output: Smallest convex polygon that contains all points

Polygon: circular sequence of points connected by line segments

- **Input:** Set of *n* points in \mathbb{R}^2
- Output: Smallest convex polygon that contains all points

Output:

 $p_2, p_6, p_{12}, p_9, p_{11}, p_{13}, p_8$

Polygon: circular sequence of points connected by line segments

- **Input:** Set of *n* points in \mathbb{R}^2
- Output: Smallest convex polygon that contains all points

Output:

 $p_2, p_6, p_{12}, p_9, p_{11}, p_{13}, p_8$

Polygon: circular sequence of points connected by line segments

• **Input:** Set of *n* points in \mathbb{R}^2

Output: Smallest convex polygon that contains all points

Polygon: circular sequence of points connected by line segments

• **Input:** Set of *n* points in \mathbb{R}^2

Output: Smallest convex polygon that contains all points

Polygon: circular sequence of points connected by line segments

• Input: Set of n points in \mathbb{R}^2

Output: Smallest convex polygon that contains all points

Polygon: circular sequence of points connected by line segments

Given two points $p = (p_x, p_y)$ and $q = (q_x, q_y)$

• q

·

Given two points $p = (p_x, p_y)$ and $q = (q_x, q_y)$

Definition. The segment \overline{pq} is the set of all points $r = \alpha p + (1 - \alpha)q$ for all $0 \le \alpha \le 1$, i.e.,

$$r = \binom{r_x}{r_y} = \alpha \binom{p_x}{p_y} + (1 - \alpha) \binom{q_x}{q_y} = \binom{\alpha p_x + (1 - \alpha) q_x}{\alpha p_y + (1 - \alpha) q_y}$$

Given two points $p = (p_x, p_y)$ and $q = (q_x, q_y)$

Definition. The segment \overline{pq} is the set of all points $r = \alpha p + (1 - \alpha)q$ for all $0 \le \alpha \le 1$, i.e.,

$$r = \binom{r_x}{r_y} = \alpha \binom{p_x}{p_y} + (1 - \alpha) \binom{q_x}{q_y} = \binom{\alpha p_x + (1 - \alpha) q_x}{\alpha p_y + (1 - \alpha) q_y}$$

Given two points $p = (p_x, p_y)$ and $q = (q_x, q_y)$

Definition. The segment \overline{pq} is the set of all points $r = \alpha p + (1 - \alpha)q$ for all $0 \le \alpha \le 1$, i.e.,

$$r = \begin{pmatrix} r_x \\ r_y \end{pmatrix} = \alpha \begin{pmatrix} p_x \\ p_y \end{pmatrix} + (1 - \alpha) \begin{pmatrix} q_x \\ q_y \end{pmatrix} = \begin{pmatrix} \alpha p_x + (1 - \alpha) q_x \\ \alpha p_y + (1 - \alpha) q_y \end{pmatrix}$$

- **Input:** Set of *n* points in \mathbb{R}^2
- Output: Smallest convex polygon that contains all points

Output:

 $p_2, p_6, p_{12}, p_9, p_{11}, p_{13}, p_8$

Polygon: circular sequence of points connected by line segments

- **Input:** Set of *n* points in \mathbb{R}^2
- Output: Smallest convex polygon that contains all points

Output:

 $p_2, p_6, p_{12}, p_9, p_{11}, p_{13}, p_8$

In clockwise order

Polygon: circular sequence of points connected by line segments

Given two points $p = (p_x, p_y)$ and $q = (q_x, q_y)$

• 9

r

Given two points $p = (p_x, p_y)$ and $q = (q_x, q_y)$

Given two points $p = (p_x, p_y)$ and $q = (q_x, q_y)$

$$\ell: y = mx + b$$

Given two points $p = (p_x, p_y)$ and $q = (q_x, q_y)$

Solve for *m* and *b*

Given two points $p = (p_x, p_y)$ and $q = (q_x, q_y)$

$$\ell: y = mx + b$$

$$\begin{cases} p_y = m \cdot p_x + b \\ q_y = m \cdot q_x + b \end{cases}$$

$$m = \frac{p_y - q_y}{p_x - q_x} \qquad b = \frac{p_x q_y - p_y q_x}{p_x - q_x}$$

Deciding the Ordering

$$r_y \ge mr_x + b = \frac{p_y - q_y}{p_x - q_x} \cdot r_x + \frac{p_x q_y - p_y q_x}{p_x - q_x}$$
clockwise

Deciding the Ordering

counter-clockwise

$$r_y \geq mr_x + b = \frac{p_y - q_y}{p_x - q_x} \cdot r_x + \frac{p_x q_y - p_y q_x}{p_x - q_x}$$

clockwise

$$(p_X - q_X) \cdot r_y \leq (p_y - q_y)r_X + (p_X q_y - p_y q_X)$$

Deciding the Ordering

$$\begin{vmatrix} q_x & q_y \\ r_x & r_y \end{vmatrix} - p_x \cdot \begin{vmatrix} 1 & q_y \\ 1 & r_y \end{vmatrix} + p_y \cdot \begin{vmatrix} 1 & q_x \\ 1 & r_x \end{vmatrix} +$$

$$\begin{vmatrix} q_x & q_y \\ r_x & r_y \end{vmatrix} - p_x \cdot \begin{vmatrix} 1 & q_y \\ 1 & r_y \end{vmatrix} + p_y \cdot \begin{vmatrix} 1 & q_x \\ 1 & r_x \end{vmatrix} +$$

$$= (q_x r_y - r_x q_y) - p_x \cdot (r_y - q_y) + p_y \cdot (r_x - q_x)$$

$$\begin{vmatrix} q_{x} & q_{y} \\ r_{x} & r_{y} \end{vmatrix} - p_{x} \cdot \begin{vmatrix} 1 & q_{y} \\ 1 & r_{y} \end{vmatrix} + p_{y} \cdot \begin{vmatrix} 1 & q_{x} \\ 1 & r_{x} \end{vmatrix} + = (q_{x}r_{y} - r_{x}q_{y}) - p_{x} \cdot (r_{y} - q_{y}) + p_{y} \cdot (r_{x} - q_{x}) = q_{x}r_{y} - r_{x}q_{y} - p_{x}r_{y} + p_{x}q_{y} + p_{y}r_{x} - p_{y}q_{x}$$

$$\begin{vmatrix} q_{x} & q_{y} \\ r_{x} & r_{y} \end{vmatrix} - p_{x} \cdot \begin{vmatrix} 1 & q_{y} \\ 1 & r_{y} \end{vmatrix} + p_{y} \cdot \begin{vmatrix} 1 & q_{x} \\ 1 & r_{x} \end{vmatrix} +$$

$$= (q_{x}r_{y} - r_{x}q_{y}) - p_{x} \cdot (r_{y} - q_{y}) + p_{y} \cdot (r_{x} - q_{x})$$

$$= q_{x}r_{y} - r_{x}q_{y} - p_{x}r_{y} + p_{x}q_{y} + p_{y}r_{x} - p_{y}q_{x}$$

$$= -(p_{x} - q_{x}) \cdot r_{y} + (p_{y} - q_{y}) \cdot r_{x} + (p_{x}q_{y} - p_{y}q_{x}) \ge 0$$

$$\begin{vmatrix} q_{x} & q_{y} \\ r_{x} & r_{y} \end{vmatrix} - p_{x} \cdot \begin{vmatrix} 1 & q_{y} \\ 1 & r_{y} \end{vmatrix} + p_{y} \cdot \begin{vmatrix} 1 & q_{x} \\ 1 & r_{x} \end{vmatrix} +$$

$$= (q_{x}r_{y} - r_{x}q_{y}) - p_{x} \cdot (r_{y} - q_{y}) + p_{y} \cdot (r_{x} - q_{x})$$

$$= q_{x}r_{y} - r_{x}q_{y} - p_{x}r_{y} + p_{x}q_{y} + p_{y}r_{x} - p_{y}q_{x}$$

$$= -(p_{x} - q_{x}) \cdot r_{y} + (p_{y} - q_{y}) \cdot r_{x} + (p_{x}q_{y} - p_{y}q_{x}) \ge 0$$

$$(p_y - q_y) \cdot r_x + (p_x q_y - p_y q_x) \stackrel{\geq}{=} (p_x - q_x) \cdot r_y$$

Convex Hull

- **Input:** Set of *n* points in \mathbb{R}^2
- Output: Smallest convex polygon that contains all points

Output:

 $p_2, p_6, p_{12}, p_9, p_{11}, p_{13}, p_8$

In clockwise order

Polygon: circular sequence of points connected by line segments

S is convex iff for every pair of points $p, q \in S$, the segment \overline{pq} is in S.

Let p_k be the leftmost point

Let p_k be the leftmost point

Let p_k be the leftmost point

Let p_k be the leftmost point

Let p_k be the leftmost point

Let p_k be the leftmost point

Let p_k be the leftmost point

Let p_k be the leftmost point

Let p_k be the leftmost point


```
Let p_k be the leftmost point
\overline{p_k, p_2} has the largest slope
among all \overline{p_k, p_i}
procedure GIFTWRAP([p_1...p_n])
    s = \arg\min p_i
    K = S
    repeat
        j = \text{FINDMAXSLOPE}(p_k, [p_1..p_n])
         PRINT(p_i)
         K = j
    until k = s
end procedure
```


Let p_k be the leftmost point

 $\overline{p_k, p_2}$ has the largest slope among all $\overline{p_k, p_i}$

procedure GIFTWRAP($[p_1..p_n]$)

$$O(n)$$
 $s = \arg\min p_i$

$$O(1)$$
 $k = s$

repeat

$$O(n)$$
 $j = FINDMAXSLOPE(p_k, [p_1...p_n])$

$$O(1)$$
 PRINT (p_i)

$$O(1)$$
 $k=j$

end procedure

Let p_k be the leftmost point

 $\overline{p_k, p_2}$ has the largest slope among all $\overline{p_k, p_i}$

procedure GIFTWRAP($[p_1..p_n]$)

$$O(n)$$
 $s = \underset{x}{\operatorname{arg min}} p_i$

$$O(1)$$
 $k = s$

repeat

?
$$O(n)$$
 $j = FINDMAXSLOPE(p_k, [p_1..p_n])$
? $O(1)$ PRINT (p_j)
 $O(1)$ $k = i$

O(1) K = J

until k = s

end procedure

h: # of points on the hull

 $\overline{p_k, p_2}$ has the largest slope among all $\overline{p_k, p_i}$ **procedure** GIFTWRAP($[p_1..p_n]$) O(n) $s = \arg\min p_i$ repeat $j = FINDMAXSLOPE(p_k, [p_1..p_n])$ $PRINT(p_i)$ until k = s

Let p_k be the leftmost point

end procedure

h: # of points on the hull

Let p_k be the leftmost point

 $\overline{p_k, p_2}$ has the largest slope among all $\overline{p_k, p_i}$

procedure GIFTWRAP([$p_1..p_n$])

$$O(n)$$
 $s = \arg\min p_i$

$$O(1)$$
 $k = s$

repeat

$$O(n)$$
 $j = FINDMAXSLOPE(p_k, [p_1...p_n])$

$$O(1)$$
 PRINT (p_j)

$$O(1)$$
 $k=j$

until k = s

end procedure

O(nh

h: # of points on the hull

Let p_k be the leftmost point

 $\overline{p_k, p_2}$ has the largest slope among all $\overline{p_k, p_i}$

procedure GIFTWRAP([$p_1..p_n$])

$$O(n)$$
 $s = \arg\min p_i$

$$O(1)$$
 $k = s$

repeat

$$O(n)$$
 $j = FINDMAXSLOPE(p_k, [p_1...p_n])$

$$O(1)$$
 PRINT (p_j)

$$O(1)$$
 $k = j$

until k = s

end procedure

O(nh)

If h = n, then $O(n^2)$

Let p_k be the leftmost point Sort all points radially around p_k

Let p_k be the leftmost point Sort all points radially around p_k

Let p_k be the leftmost point Sort all points radially around p_k Report points in that order

Let p_k be the leftmost point Sort all points radially around p_k Report points in that order

Let p_k be the leftmost point Sort all points radially around p_k Report points in that order

Simple polygon, but not convex

Let p_k be the leftmost point Sort all points radially around p_k Report points in that order

Simple polygon, but not convex

- Identify a reflex vertex in O(1) time
- Eliminate reflex vertex in O(1) time
- Repeat until no reflex vertices remain

- Identify a reflex vertex in O(1) time
- Eliminate reflex vertex in O(1) time
- Repeat until no reflex vertices remain

O(n) time

- Identify a reflex vertex in O(1) time
- Eliminate reflex vertex in O(1) time
- Repeat until no reflex vertices remain

O(n) time

 $O(n \log n)$ time for initial sorting