
ICS 621: Analysis of Algorithms Fall 2021

Lecture 7: Randomized search trees

Prof. Nodari Sitchinava Scribe: In Woo Park, Michal Rogers, Darlene Agbayani

1 Overview

Previously, we covered Optimal Binary Search Trees (BST), by first constructing a BST then de-
termining the recursive formula for the cost, and analyzing the runtime. In addition, we introduced
Splay Trees, a self-balancing data structure as well as the three (3) reconstructing heuristics also
known as Splay Operations. For each operation: Zig, Zig-Zag, and Zig-Zig, we discussed how ro-
tations are made in pairs, dependent on the structure of the access path. Lastly, we analyzed the
Amortized Cost of each Splay Operation using a potential function.

In this lecture, we will be introducing Treaps, defining their basic structure. As well as Treap Opera-
tions, including: Treap-Insert(T, v), Treap-Delete(v), Treap-Increase-Priority(v, new priority),
Treap-Split(T, key) and Treap-Merge(T<, T>). After we define the Treap Operations, we will
then analyze their runtimes. Lastly, we will introduce Skip Lists and define their structure.

2 Treaps

2.1 Basic Structure

A treap is a search tree data structure based on binary search trees (BST) and heaps. The basic
structure of a treap is that of a binary tree, with each node containing a key and a priority. The
tree maintains the BST property on the keys, i.e., each node has a key greater than the keys of
all nodes in its left subtree, and smaller than the keys of all nodes in its right subtree. The tree
also maintains the heap property on the priorities, i.e., the priority of each node is smaller than
the priorities of its children. Equivalent to a treap is a BST constructed by inserting nodes in
increasing order of priorities, using standard BST insertion.

Treaps can also be described geometrically. For a given set of nodes, let each node be a point on
an xy plane, with the key of each node as its x-coordinate, and the priority of each node as its
y-coordinate. Additionally, let the y-axis of the graph be reversed, so that the lowest priority point
is the highest on the graph. By sectioning off the graph by the y-intercepts and the lower portion
of the x-intercepts, and then connecting each node to the right and left nodes (if any) that are
within the boundaries of each section, we will recreate the same treap structure as defined above.

This structure is known as a Cartesian tree, one application of which is a 3-sided query. An example
of this would be a database search for all people whose income is greater than a threshold (1 side)
and who are within a certain age range (2 sides).

1

G1

C2

A5 D4

H3

I6

Figure 1: A treap with each node KP having key = K and priority = P

1

2

3

4

5

6

A C D G H I

Figure 2: A Cartesian tree representation of the treap

2.2 Treap Operations

Insertion into a treap can be accomplished by performing a normal BST insertion, then performing
rotations on the inserted node until the heap property is restored.

The initial BST insertion ensures that the BST order is maintained. Rotations do not affect the
BST order, and they are performed until the priority of v is greater than its parent’s, ensuring that
the heap property is maintained at the end of the treap insertion.

Deleting a node v is accomplished by increasing the priority of v to infinity, then repeatedly rotating
on the child of v, which has lower priority of the two children, until v becomes a leaf, at which
point we can remove it.

2

Algorithm 1

1: Treap-Insert(T, v)
2: BST-Insert(T, v)
3: while v.priority < v.parent.priority
4: Rotate(v)

Algorithm 2

1: function Treap-Delete(v)
2: Treap-Increase-Priority(v,∞)
3: Delete(v)

1: function Treap-Increase-Priority(v, new priority)
2: v.priority = new priority
3: if v.left 6= nil & (v.right 6= nil & v.right.priority > v.left.priority)
4: min = v.left
5: else
6: min = v.right

7: while min 6= nil
8: Rotate(min)
9: if v.left 6= nil & (v.right 6= nil & v.right.priority > v.left.priority)

10: min = v.left
11: else
12: min = v.right

A treap can also be split into two treaps along a specified key. The result is one treap containing
all nodes with keys that are smaller than the specified key and another treap containing all nodes
with keys that are greater.

Algorithm 3 Splits the treap T around key k

1: function Treap-Split(T, k)
2: v ← new Node(k,−∞) . Create a new node with key k and priority −∞
3: Treap-Insert(T, v) . v will be the root, because v.priority = −∞
4: T< ← v.left
5: T> ← v.right
6: Delete(v)
7: return (T<, T>)

Likewise, two treaps can be merged into a single treap.

3

Algorithm 4

1: function Treap-Merge(T<, T>)

2: v ← new Node
(
max(T<)+min(T>)

2 ,−∞
)

. New key is between all keys in T< and in T>

3: v.left← T<.root
4: v.right← T>.root
5: T ← v . v is the new root of T
6: Treap-Delete(v)
7: return T

2.3 Treap Operation Analysis

So what are the runtimes of these operations? In each case, we need to traverse across the height
of the treap. This gives us a runtime of O(height) = O(log n) in a balanced treap, since a balanced
binary tree has a height of O(log n). However, nothing about the treap structure guarantees
balance; a treap height could easily be linear. So instead of guaranteeing balance in the worse case,
we can use randomization to ensure balance. In fact, the definition of a treap is a BST, where the
priorities of the nodes are radomly chosen.∗ When priorities are randomly chosen from a uniform
distribution, the result is a tree with the expected height of O(log n), as we will show next.

To prove the expected height of the treap, we start by defining some variables: let xk be the node
with the kth smallest key in the treap. Then we want to prove that for any node xk, E[depth(xk)] =
O(log n).

Let Yij be an indicator random variable defined as I{xi is a proper ancestor of xj}. So, Yij = 0
when xi is not a proper ancestor of xj and 1 when it is. Note that Yii = 0.

The depth of any node is equal to the total number of all nodes that are its proper ancestors.
Which can be written as:

depth(xk) =

n∑
i=1

Yik

The expected depth of xk is then equal to the expected number of proper ancestors of xk. Using
linearity of expectations we get:

E[depth(xk)] = E

[
n∑
i=1

Yik

]
=

n∑
i=1

E[Yik]

And since the expected value of an indicator random variable is equal to the probability of the
variable being equal to 1:

E[depth(xk)] =

n∑
i=1

Pr[Yik = 1]

Now let us define an ordered set x(i, j) = {xi, xi+1, ...xj−1, xj} such that all keys are in ascending
sorted order from xi to xj .

∗The y-coordinate of the points in the Cartesian tree are not random, but are given as part of the input.

4

Lemma 1. Yij = 1 (xi is a proper ancestor of xj) if and only if xi has the smallest priority among
all keys in x(i, j).

Proof. To prove the above lemma, let us consider four cases:

Case 1: xi is the root of T .

If xi is the root of the entire treap, then by the heap property, it must have the lowest
priority of all nodes. By definition of a binary tree, xi is the ancestor of all other nodes, and
is therefore a proper ancestor of xj .

Case 2: xj is the root of T .

If xj is the root of the entire treap, then it must have the lowest priority among all nodes.
Therefore, xi cannot be the lowest priority node in x(i, j). Additionally, since xj is the
ancestor of all nodes, xi cannot be a proper ancestor of xj .

Case 3: xi and xj are in different subtrees.

Since xi and xj are in different subtrees, there must exist some value k such that i < k < j
and the priority of xk is less than the priority of xi. Since xi and xj are in different subtrees,
xi cannot be the ancestor of xj .

Case 4: xi and xj are in the same subtree.

If xi and xj are in the same subtree, then the lemma must be true by induction, since the
subtree is a smaller case of our original treap, T .

Now that we have proven that a node xi is only a proper ancestor of xj iff xi has the lowest priority
in x(i, j), to get the expected number of ancestors of any node xk, we can simply sum the expected
values of Yik for all nodes xi.

E[depth(xk)] =
n∑
i=1

Pr[xi has the smallest priority in x(i, k) ∧ i 6= k]

Since the priorities of x(i, k) are uniformly distributed, i.e., each of {xi, . . . , xk} is equally likely to
be the smallest,

E[depth(xk)] =
n∑
i=1

1

|i− k|+ 1
− 1

=
k−1∑
i=1

1

k − i+ 1
+

n∑
i=k+1

1

i− k + 1

=

k∑
j=2

1

j
+

n−k+1∑
j=2

1

j

≤ 2
n∑
j=2

1

j
< 2

∫ n

1

1

x
dx = 2 lnn (geometrically justified)

= O(log n).

5

As the expected depth of any node is O(log n), the above operations all run in O(log n) expected
time.

3 Skip lists

Introduced by William Pugh† in [Pug90], skips lists are probabilistically balanced data structures
that offer the same (expected) bounds for insert, search, and deletion operations as balanced BSTs.
They are built to offer faster and simpler implementations than balanced BSTs. Since they are
probabilistic in nature, just like treaps, we will show that the performance of skip lists is as good
as balanced BSTs in expectation, but may exhibit worse performance in the worst cases (but as we
show this is extremely unlikely).

3.1 Intuition

A skip list, can be views intuitively, as multiple train lines, where an express train line skips
some stops on the way, compared to a normal train line that stops at each location. To reach
a destination, one takes the express train to the last reachable stop before a destination on the
express train line, and then switches to a normal train for the rest of the trip if needed.

Given a sorted set X1 = {x0, . . . , xn−1}, consider its subset of every kth element:

X2 = {x0, xk, x2k, . . . , x`k} ⊆ X1, where ` = b(n− 1)/kc

We store the two sets as linked lists. Moreover, for every xi ∈ X2, we create a pointer from every
xi ∈ X2, to the corresponding xik ∈ X1. Note that between every pair of neighboring elements xi
and xi+1 in X2, there are k − 1 elements in X1. An example of the two lists for k = 2 are shown
in Figure 3.

To search for an element with key x, we traverse the second linked list X2 until we reach a node xi
whose neighbor xi+1 is larger than x. Next, by following the (down) pointer from xi to xik ∈ X1,
we continue the search for x in X1.

1 3 8 15 27 35 40

8 27 401

head

Figure 3: Skip list with two levels and k = 2.

†Pugh introduced the problem in Algorithms and Data Structures, Workshop WADS in 1989 before publishing
it in 1990.

6

3.2 Optimal skip list parameter k

Given a list X1 and a skip list X2, the cost for a search for x in the worst case is n
k + k where n

k are
spent on searching X2, and k searches in X1. Putting f(k) = n/k + k where 1 ≤ k ≤ n, then the

first and second derivatives are df(k)
dk = −n/k2 + 1, and d2f(k)

dk2
= 2n/k3. Hence the minimum value

for f is at k =
√
n and the total cost is then 2

√
n.

3.3 Increasing the number of lists

In similar way, we can define X3 = {x0, xk′ , x2k′ , . . . , x`′k′} where `′ = b `+1
k′ c on top of X2, and then

the cost function f(k, k′) is given by f(k, k′) = `′ + k′ + k ≤ n
kk′ + k′ + k. To calculate the minima,

we take the derivatives with respect to both k and k′ to get the following:

df

dk
= − n

k′k2
+ 1 = 0 =⇒ k′k2 = n

df

dk′
= − n

kk′2
+ 1 = 0 =⇒ kk′2 = n

which gives kk′2 = k′2k or k = k′. Replacing k′ with k in either equation gives k = k′ = 3
√
n and

the optimal worst cost 3 3
√
n. We can generalize this approach to t linked lists. By doing a similar

analysis for level t, i.e., on Xt, we obtain optimal size k = n1/t with optimal worst case t · n1/t.
Choosing t = log n, gives k = n1/ logn = 2, with worst case search time of 2 log n.

Algorithm 5

1: function Search(k, S) . Returns the node with the largest key smaller or equal to k
2: v ← S.start
3: while (v.next 6= nil and v.next.val ≤ k) or (v.down 6= nil)
4: if v.next 6= nil and v.next.val ≤ k
5: v ← v.next
6: else
7: v ← v.down
8: return v

3.4 Insertion

To insert a new key x into a skip list, we traverse the skip lists down to the bottom list X1 and
then insert a new node containing x into X1. This takes 2 log n in the worst case, same cost as
Search. The question remains is how efficiently can we promote elements into the upper lists Xi

with 1 < i ≤ log n? In skip lists, the answer is surprisingly simple. Instead of maintaining a strict
distance between elements of neighboring linked lists, we use randomization. To decide whether to
include an element in the list above, we flip a fair coin. If the coin comes up heads, we promote a
copy of the element to the next level, stopping at the first occurence of tails.

We still need to provide an analysis of why this produces an efficient version of the skip list, and
for that, we calculate the expected maximum level τ that any element x ∈ X1 will reach, i.e., that
x ∈ Xτ .

7

Theorem 2. The height H of a skip list is at most (c+ 1) log n with high probability i.e.

Pr[H ≤ (c+ 1) log n] ≥ 1− 1

nc

for any constant c > 0.

Proof. Let H(x) denote the highest level that element x reaches. For H(x) to be greater than τ ,
every one of the first τ tosses of the coin must be heads. The probability of first τ tosses to be
heads is 1/2τ . Hence, Pr[H(x) > τ] = 1/2τ .

The height H of the skip list is the height of the maximum H(x) among all x ∈ X1:

Pr[H > τ] = Pr[max
x∈X1

{H(x)} > τ]

= Pr[H(x1) > τ or H(x2) > τ · · · or H(xn) > τ]

≤
∑
x∈X1

Pr[H(x) > τ] (by the Union Bound)

=
∑
x∈X1

1

2τ

=
n∑
i=1

1

2τ
(there are n keys in X1)

=
n

2τ

Choosing τ = (c+ 1) log n gives us:

Pr[H > (c+ 1) log n] ≤ n

2(c+1) logn
=

n

nc+1
=

1

nc

The event H ≤ (c+ 1) log n is the opposite of H > (c+ 1) log n. Therefore:

Pr[H ≤ (c+ 1) log n] = 1− Pr[H > (c+ 1) log n] ≥ 1− 1

nc
.

Algorithm 6

1: function Insert(k, S)
2: v ← Search(k, S) . the predecessor node at the bottom level
3: if v.key 6= k
4: listInsert(v, new Node(k)) . Insert a new node with key k into the list after v
5: bit← coinFlip()
6: while bit == heads
7: promote a copy of v to the level above
8: bit← coinFlip()

References

[Pug90] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM,
33(6):668–676, 1990.

8

