
ICS 621: Analysis of Algorithms Fall 2021

Lecture 3 — September 17, 2021

Prof. Nodari Sitchinava Scribe: In Woo Park, Darlene Agbayani, Michael Rogers

1 Overview

Previously, we covered mergeable priority queues, starting with a brief overview of the priority
queue abstract data type (ADT), and reviews of both Binary and Binomial heaps. Next, we
analyzed each corresponding ADT function used in Binomial heap operations. We then introduced
Lazy Binomial heaps, which improve upon the traditional Binomial heaps by delaying the work
normally carried out during the Union(Q) operation, thus reducing the Union(Q1, Q2) operation
to a constant factor. Finally, for homework, we designed and analyzed an efficient algorithm to
perform Extract-Min(Q).

In this lecture, we will begin by reviewing the Lazy Binomial Heap operations, including an in-
depth analysis of Extract-Min(Q), which was introduced in the homework. Understanding the
algorithms behind Lazy Binomial heaps are a great segue into today’s primary topic, Fibonacci
heaps. We will see how Fibonacci heaps can be used to reduce runtimes even further, and also
discuss a well-known application of this data structure, Dijkstra’s Algorithm.

2 Mergeable Heaps Continued

Binomial Lazy Binomial Fibonacci

Make() O(1) O(1) O(1)

Insert(Q, x) O(1)∗ O(1) O(1)

Minimum(Q) O(1) O(1) O(1)

Extract-Min(Q) O(log n) O(log n)∗ O(log n)∗

Decrease-Key(Q, x, k) O(log n) O(log n) O(1)∗

Delete(Q, x) O(log n) O(log n)∗ O(log n)

Union(Q1, Q2) O(log n) O(1) O(1)

Table 1: Running times for operations of the three implementations of the priority queue. The
running times marked with ∗ are amortized.

The key difference between the Lazy Binomial Heap and Fibonacci Heap implementations is the
amortized cost of Decrease-Key(Q, x, k) becomes constant time, while still maintaining the ad-
vantages of Lazy Binomial over standard Binomial heaps, i.e., the exchange from worst-caseO(log n)
to amortized cost O(log n) for calls made to Extract-Min(Q) and Delete(Q, x), with the faster,
worst-case O(1) cost of calls to Union(Q1, Q2).

1



3 Lazy Binomial Heaps

Let’s review Lazy Binomial heaps.

Reminder: The laziness of binomial heaps lies in relaxing the requirement of having at most one
tree of each order in the heap. The invariant of non-decreasing values from root to leaves (the heap
order) within the trees is still being maintained.

3.1 Lazy Union(Q1, Q2)

Relaxing the invariant that there be at most one binomial tree of each order allows us to perform
Union(Q1, Q2) in O(1) time. If our root list is a circular doubly linked list, Union(Q1, Q2) can be
performed by joining the lists and updating the pointer to the minimum by setting it to the mini-
mum of the two heaps. We also will be storing the size of the heap (as Q.n), and in Union(Q1, Q2)
we will update this size as the sum of Q1.n and Q2.n. Moreover, since the sibling lists are circular,
we no longer need to keep a pointer to the head node. Instead, we can pick any arbitrary node in
the root list as a starting point, and since we already maintain a pointer to the minimum element,
it is easy enough to just start with that node.

Algorithm 1

Union(Q1, Q2)

1 L1 = Q1.min.left
2 R2 = Q2.min.right
3 L1.right = R2

4 Q2.min.right = Q1.min
5 Q1.min.left = Q2.min
6 if Q1.min.key < Q2.min.key
7 Q2.min = Q1.min
8 return Q2

Observe that this implementation of Union takes only O(1) time in the worst case. However, it
no longer preserves the invariant that the list is ordered by the sizes of trees. Moreover, it is also
no longer true that the binomial heap will have at most one binomial tree of each size. In fact,
the root lists can contain arbitrarily many trees of the same size. We will restore these invariants
during the Extract-Min operation.

3.2 Insert(Q, x)

On the bright side, we can also implement Insert(Q, x) in O(1) worst-case time:

Algorithm 2

Insert(Q, x)

1 Q′ = new BinomialHeap(x)
2 return Union(Q,Q′)

2



3.3 Extract-Min(Q)

36

8 12 25

18

2914

381711

27

107

9

1

15

17

31

36

Q.min

36

8 12 25

18

2914

381711

27

1079

15

1731

36

36

8 12 25

18

2914

381711

27

1079

15

1731

36

Lv Rv

LcLv Rvc

c

Q.min

Figure 1: An example of EXTRACT-MIN(Q)

Extract-Min(Q), as shown in Figure 1, is one of the more interesting operations, and is where
most of the important work happens in the Lazy Binomial Heap. We begin by finding the node
v that stores the minimum key, removing the tree rooted at v from the root list and splicing the
children of v into the root list. Since the list of children is stored as a circular list, we can perform
the splicing in constant time.

3



Following the splicing, we once again have a collection of binomial trees in arbitrary order with
no guarantees of how many of each order. At this point we perform Consolidate(Q) operation
which consolidates all the trees of the root list, so there is at most one of each order and which
finds the new minimum node among the remaining nodes of the root list.

Algorithm 3

Extract-Min(Q)

1 v = Minimum(Q)
2 c = v.child
3 Lv = v.left
4 Rv = v.right
5 if c 6= nil
6 Lc = c.left
7 Lv.right = c
8 c.left = Lv
9 Rv.left = Lc

10 Lc.right = Rv
11 else
12 Lv.right = Rv
13 Rv.left = Lv
14 Q.min = Rv . arbitrary head
15 Consolidate(Q)
16 return v

Figure 1, specifically the top most heap, shows all the pointers maintained by Extract-Min(Q).
The second heap shows how lines 1-14 of the Extract-Min(Q) pseudocode removes the minimum
node 1 by removing 1’s pointers to its children and vice versa. To maintain the lazy binomial heap,
we simply move 1’s children up to the root list and move their pointers to respect that this data
structure is a doubly linked circular list.

Minimum(Q) simply calls return Q.min where Q.min contains a pointer to the current index. This
function takes O(1) time.

Algorithm 4

Minimum(Q)

1 return Q.min

Now that we have successfully removed the minimum node from the lazy binomial heap, we need
to keep track of a new minimum node so that the Minimum(Q) function has runtime of O(1).
Therefore, after we remove the minimum node, we set Rv as our initial minimum pointer, and
at each iteration of the for loop in Consolidate(Q) (lines 10-14), we compare A[i].key with our
minimum pointer, and update the minimum pointer if A[i].key is ever less than Q.min.

Extract-Min(Q) calls the function Consolidate(Q) in order to cleanup the binomial heap and
maintain the property that there are at most one tree of each size. We process each root v such
that the degree of v is used as the index of the array A, and A stores a pointer to that node if it is

4



Algorithm 5

Consolidate(Q)

1 Initialize log n-sized array A to nil
2 for each v in root list
3 d = v.degree
4 while A[d] 6= nil
5 v = Link(v,A[d])
6 A[d] = nil
7 d = d+ 1
8 A[d] = v; v.parent = nil
9 min = +∞

10 for i = 0 to log n− 1 do
11 if A[i] 6= nil then
12 Add A[i] to the root list
13 if A[i].key < min then
14 Q.min← A[i];min = A[i].key

empty. If A is not empty, we need to link the two subtrees together to maintain the binomial heap
property by using the function Link(v,A[d]).

Algorithm 6

Link(v, w)

1 if w.key < v.key
2 swap(v, w) . make sure v is smaller
3 Add w to the child list of v
4 v.degree = v.degree+ 1

Link(v,A[d]) removes v from the root list of A and makes it the child of A[v.degree] where
A[v.degree] has a pointer to a root node of the same degree. The function ends with A having
a pointer to the new subtree with increased degree and subsequently continuing the Link(v,A[d])
function if A already has a pointer to a older subtree of the same degree.

Extract-Min(Q) ends with returning v the minimum node, but in addition, we cleaned up the
lazy binomial heap by combining root nodes of the same degree until we are left with a binomial
heap with at most one tree of each size.

Proving Algorithm Correctness

The invariant for the for loop on lines 2-8 of Consolidate(Q) is that during each iteration of the
loop, A points to a subset of trees that are unique in size. Before the first iteration of the loop
(Initialization), A[d] is empty so the invariant is satisfied. To show that the Maintenance condition
is satisfied, Consolidate(Q) calls the while loop which needs its own invariant and we’ll address
it in the next paragraph. During termination we are left with the useful property that after the
last iteration, all trees in the subset are unique in size.

〈 Correct invariant is presented on page 517 of CLRS 〉 The invariant we can place for each iteration

5



of the while loop on lines 4-7 is that, if A[d+ 1] is non-empty, A[d] must continue linking with v.
During initialization, A[d] already has a pointer to a subtree with the same degree, therefore we
compare v.key and A[d].key values to determine which gets merged as a child and which stays in
the root node. Once chosen, the subtree with the higher key value is linked as the leftmost child
of the root node. The root node is then incremented in degree. During maintenance, our previous
A[d], which had successfully linked during initialization, may encounter that A[d+ 1] also already
has a pointer stored to a subtree, therefore we continue the linking process until A[d + n] root
nodes are checked and linked. During termination, A[d + 1] is finally empty, therefore, no more
links are required, the new subtree is incremented in degree, and stored at A[d+ 1] and the loop is
terminated. We are left with the useful property that the subtree we created is unique in size.

Finally, we iterate over all the keys stored at the roots and update the Q.min to point to the
smallest.

3.4 Amortized Cost

Analysis

We will use the Potential Method with Φi = ti = number of trees in the root list after the i-th
operation.

Let d be the number of children of the Q.min. Observe that the number of children in a binomial
tree is at most log n (and we never add children to any of the original binomial trees, only potentially
remove them). Therefore, d ≤ log n.

• Actual cost is ci ≤ O(1) + (ti−1 + d) + log n ≤ O(1) + ti−1 + 2 log n, where O(1) sets the
pointer, (ti−1 + d) represents the runtime of consolidation, and log n is the initialization of
the array and updates the pointer. The bound on d is log n − 1 because every tree is valid,
therefore the number of children is at most log n.

• The change in potential is ∆Φi = ti − ti−1 Where ti is the number of trees after the ith

operation, and ti−1 is the number of trees before the ith operation.

Then the amortized cost is defined by

ĉi = ci + ∆Φi ≤ O(1) + ti−1 + 2 log n+ ti − ti−1 = O(1) + 2 log n+ ti ≤ O(1) + 3 log n = O(log n),

because the number of trees in the root list after consolidation is at most log n, i.e., ti ≤ log n.

DELETE(Q, x) and DECREASE-KEY(Q, x, k) stay the same as in standard Binomial heap.

Student Question
The for loop iterates for each v in the root list. I thought that would be k. Where does that
disappear? I thought k would be the number of roots before we consolidate?

Notice that we define it not as k but rather ti−1 where ti−1 is the number of trees in the root list
before consolidation. Think of it as ki, before k was the order of a binomial tree, where the number
of elements at the root list was k. k doesn’t disappear, but rather becomes ti−1 based on how we
defined it in our analysis.

6



Student Question
How come the root list is the only one considered? What about the while loop?

Among all nodes, the for and while loop will process twice. Some nodes will be processed twice
such as the minimum node 3 in Figure 1. Although our minimum node is processed the most,
there aren’t many nodes that will be processed that many times. The number of times for and
while iterates will be 2 - (number of nodes). Once processed and subsequently removed, it is never
visited again. Among all nodes, it will be processed 2 times. Across k items in the root list, the
total number of processed nodes will be 2k or ti−1.

4 Fibonacci Heaps

Fibonacci heaps are an extension of lazy binomial heaps. They follow the same “lazy” approach
and enforce the same runtime complexity for each of the lazy binomial heap’s operations. However,
Fibonacci heaps provide an optimization to support a more efficient Decrease-Key operation.

4.1 Motivation

A heap with a more efficient Decrease-Key operation has applications to classical graph problems.
In the case of Dijkstra’s single-source shortest paths algorithm, Fibonacci heaps are used to obtain
a reduced runtime complexity.

Let m be the number of edges and n be the number of vertices in a graph. Then Dijksta’s algorithm
runs in O(m · TDecrease-Key + n · TExtract-Min), where TDecrease-Key is the time complexity of each
Decrease-Key operation, which is called for each edge, and TExtract-Min is the time complexity
of each Extract-Min operation, which is called for each node. If the heap is implemented using
a Binary Heap or as a Binomial Heap, the runtime of Dijkstra’s algorithm becomes O(m log n +
n log n). By implementing the heap as a Fibonacci Heap with O(1) amortized Decrease-Key
operation, the runtime of Dijkstra’s algorithm becomes O(m+ n log n) which is strictly better for
dense graphs (with m = ω(n) edges).

4.2 Properties

In general, Fibonacci heaps can be implemented with the same data structure as lazy binomial
heaps with the addition of a marked property for nodes:

1. Each tree is heap-ordered
2. The root list may contain an arbitrary number of trees
3. Sibling lists are doubly-linked circular lists
4. Each node v has properties:

• v.parent: pointer to its parent
• v.child: pointer to one (arbitrary) child
• v.degree: number of children
• v.marked: a boolean representing whether or not v has lost a child since becoming a

child of another node

7



4.3 Functions

Fibonacci heaps are able to achieve an O(1) amortized cost for Decrease-Key (Algorithm 7) by
introducing a new function Cut (Algorithm 8), as well as making a minor modification during
consolidation. Lazy binomial heaps implement Decrease-Key by modifying a given node’s key
value then restoring heap order up the tree, which incurs a cost of O(log n) in the worst case.
Fibonacci heaps avoid this cost by modifying the node’s key and cutting out the selected node,
along with its entire subtree, and adding it to the root list. Since the node becomes a new root,
heap order is guaranteed to be maintained.

Algorithm 7

Fib-Decrease-Key(Q, x, k) . Assert k < v.key

1 v.key = k
2 if v.parent 6= NIL and v.key < v.parent.key
3 Cut(Q, v, v.parent)

If the cut out node’s parent was already marked before this operation, i.e. it previously had a child
cut away, we call Cut on the parent as well. This is done recursively until we find a parent that
has not yet been marked or reach the root of the tree.

Algorithm 8

Cut(Q, v, p) . p is the parent of v

1 Remove v from child list of p
2 Add v to the root list of Q
3 v.marked = false; v.parent = NIL . Unmark v
4 if p.parent 6= NIL
5 if p.marked = false
6 p.marked = true . p just lost a child, so mark it
7 else . p just lost the second child
8 Cut(Q, p, p.parent) . so add it to the root list too

However, after performing many cuts, the heap may become filled with many small and thin trees.
Therefore, the number of children cut from any node is limited to two before it is cut itself and
added to the root list. This is done by ”marking” nodes that have children cut away. Also, it is
important to note that the binomial tree structure may no longer be preserved in the process of
cutting away arbitrary children. Therefore, it is no longer guaranteed that Fibonacci heaps are
made up of binomial trees.

Figures 2 and 3 show an example of a Fibonacci heap that calls Decrease-Key on the node 11.
In Figure 2, node 11 and its subtree are cut out and added to the root list. Continuing in Figure 3,
11’s parent (Node 8) was already marked so Cut is called again. When Node 8 is added to the
root list, it becomes unmarked. Node 8’s parent (Node 6) just lost a child, so it becomes marked.

All other lazy binomial heap operations are preserved except for linking (Algorithm 9) within
consolidation. The only difference is that when a root becomes the child of another root, the root
that becomes a child becomes unmarked.

8



6

29148

381711

27

6

29148

3817

11

27

1) Fib-Decrease-Key(11)

2) Cut out and move to root list

Figure 2: Calling Fib-Decrease-Key on Node 11

6

2914

8

38

17

11

27

6

2914

8

38

17

11

27

3) Recursive-Cut(8) Mark/Unmark

4) Move to root list11's Parent (8) was already marked

Figure 3: Cut on a parent node that was previously marked

Algorithm 9

Link(v, w)

1 if w.key < v.key
2 swap(v, w) . make sure v is smaller
3 Add w to the child list of v
4 v.degree = v.degree+ 1
5 w.marked = False . Previous root gets unmarked after becoming a new child

9



4.4 Runtime Analysis of Decrease-Key

Let ti be the number of root list trees and mi be the number of marked nodes after the i-th
operation on the Fibonacci heap. Let k be a constant (we will determine it later). We can define
the potential function for Fibonacci heap to be

Φi = k(ti + 2mi).

Let’s analyze the Decrease-Key operation. If t′ trees were added to the root list during all the
cuts of a Decrease-Key operation, then there must have been at least t′ − 1 marked nodes that
became unmarked after being added to the root list (the original node on which Cut was called
might not have been marked to begin with). Also, if all nodes are cut up to the root, the root stays
as a root, but will still get marked (hence a “+1” in the equation below). We can therefore bound
the new number of marked nodes as:

mi ≤ mi−1 − (t′ − 1) + 1.

The change in potential after the Decrease-Key operation is:

∆Φi = k(ti + 2mi)− k(ti−1 + 2mi−1),

= k(ti − ti−1) + 2k(mi −mi−1).

An upper bound for mi −mi−1 is given by the above equation for mi:

mi ≤ mi−1 − (t′ − 1) + 1,

mi −mi−1 ≤ 2− t′.

By also substituting t′ for ti − ti−1, the change in potential can be simplified:

∆Φi = k(ti − ti−1) + 2k(mi −mi−1),

≤ k · t′ + 2k(2− t′)
≤ k(t′ + 2(2− t′)),
≤ k(4− t′).

The number of cut out nodes is the bound for the actual cost ci of the Decrease-Key operation.
Therefore, the actual cost ci is O(t′). More precisely, ci ≤ k̄ · t′ for some constant k̄. By setting
k = k̄, we get

ĉi = ci + ∆Φ,

≤ k̄ · t′ + k(4− t′),
≤ 4k̄,

= O(1).

I.e., the amortized cost of Decrease-Key operation is O(1).

4.5 Runtime Analysis of Extract-Min

Fibonacci heaps implement Extract-Min the exact same way as lazy binomial heaps do. From
previous analysis, we have shown that Extract-Min has an O(log n) amortized time complexity

10



due to the fact that a binomial heap with n nodes will have at most log n binomial trees after
consolidation. Therefore, we must also make sure that there exists a similarly reasonable bound
within Fibonacci heaps.

Let Fk represent the k-th Fibonacci number. The following lemma, which is proven in the CLRS
textbook, bounds the size of the subtree rooted at every node v in the Fibonacci heap:

Lemma 1. Let d = v.degree. Then for every node v in the Fibonacci heap, SIZE(v) ≥ Fk+2 ≥ φd,
where φ = 1+

√
5

2 and SIZE(v) represents the number of nodes in the subtree rooted at v.

Then it follows that the degree of each node is bounded by:

Corollary 2. d ≤ logφ n

Observe that logφ n ≈ 1.44042 · log2 n ≤ 2 · log2 n for any n ≥ 1.

Let ti be the number of root list trees and mi be the number of marked nodes after the i-th
operation, and let di−1 be the number of children of Q.min before the i-th operation. Let k̄ be the
constant hidden in the big-O notation, as defined earlier. Any node has at most logφ n ≤ 2 log n
children, so di−1 ≤ 2 log n as well. Recall that the potential function of a Fibonacci heap is defined
as

Φi = k̄(ti − 2m).

Then the change in potential after the Extract-Min operation is:

∆Φi = k̄(ti + 2mi)− k̄(ti−1 + 2mi−1),

= k̄(ti − ti−1) + 2k̄(mi −mi−1).

During the consolidation step, nodes that become children of other nodes are unmarked so mi <
mi−1, i.e. (mi −mi−1) ≤ 0, and the change in potential becomes

∆Φi = k̄(ti − ti−1) + 2k̄(mi −mi−1),

≤ k̄(ti − ti−1).

The actual cost of Extract-Min is the sum of attaching Q.min’s children list to the root list
(O(1)), consolidation of the now ti−1 − 1 + di−1 ≤ ti−1 + 2 log n root nodes, and finding the
minimum amongst the new (at most) log n root nodes:

ci ≤ O(1) + ti−1 + di−1 + log n,

≤ O(1) + ti−1 + 3 log n.

Plugging in for the amortized runtime:

ĉi = ci + ∆Φi,

≤ O(1) + ti−1 + 3 log n+ k̄(ti − ti−1),
≤ O(1) + 3 log n+ k̄ · ti − ti−1(k̄ − 1).

Since k̄ ≥ 1, ti−1(k̄− 1) ≤ 0. Also, ti ≤ log n after consolidation, since there are at most log n root
nodes. The above equation can be further reduced:

ĉi ≤ O(1) + 2 log n+ k̄ · ti − ti−1(k̄ − 1),

≤ O(1) + 2 log n+ k̄ · ti,
≤ O(1) + 2 log n+ k̄ log n,

= O(log n).

11



I.e., the amortized cost of Extract-Min in the Fibonacci Heap is O(log n).

5 Application: Single Source Shortest Paths

You may recall the Single Source Shortest Paths problem from undergraduate algorithms: Given
a graph with n vertices and m edges, each edge has a weight, and given a start vertex s, we want
to find the shortest paths from s to every other vertex. The shortest path is defined as the sum of
weights of the edges needed to get there.

Dijkstra’s Algorithm is often taught in undergraduate algorithms which works for non-negative
weights, and typically uses a priority queue with n Insert calls, and a call to Extract-Min on
each node (total n times), and at most m calls to Decrease-Key, where m is the number of edges
and Decrease-Key is called for every edge.

We are taught it runs in O(m + n log n) time, but without Fibonacci heaps it is not the case.
Analyzing and comparing the runtimes of operations across several mergeable heaps (see Table 2),
you will notice Binary heaps and Binomial heaps both result in O(m log n) time, whereas the
total runtime for the Fibonacci heap is O(m + n log n) because even when the number of calls to
Decrease-Key is large, the amortized cost is still constant. This means that if m is larger than n
by more than a constant factor (dense graphs), the Fibonacci heaps perform asymptotically better
than the other two.

Operation
Running times

Count
Binary Heap Binomial Heap Fibonacci Heap

Insert O(1) O(1)∗ O(1) n

Extract-Min O(log n) O(log n) O(log n)∗ n

Decrease-Key O(log n) O(log n) O(1)∗ m

Total
O(n+ n log n+m log n)

= O(m log n)

O(n+ n log n+m log n)

= O(m log n)

O(n+m+ n log n)

= O(m+ n log n)

Table 2: Running times for Dijkstra’s Algorithm operations of the three implementations of the
priority queue. The running times marked with ∗ are amortized.

Student Question
Are the total costs amortized or worst-case costs? They appear to be amortized because they are
determined from amortized costs.

This was the question I wanted to ask of you following the lecture, is it actually Amortized Cost,
or Worst-case Cost?

Recall, the definition of amortized cost is if I take n operations, my total time will be n times the
total cost of each operation in the worst case. No matter how many operations I do, say n, my total
runtime of n operations will be n times the amortized cost of each operation, in the worst case.
Therefore, if we are doing n and m calls, the total cost will be n times the amortized cost of each
operation plus m times the amortized cost of each of those operations, overall, in the worst-case,
as long as n and m are large enough. This is not to say that this is the worst-case runtime of an
individual operation, some will run shorter and others longer, but the total overall is the worst-case.

12


