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Abstract—This paper considers fitting a mixture of Gaussians model to
high-dimensional data in scenarios where there are fewer data samples
than feature dimensions. Issues that arise when using principal compo-
nent analysis (PCA) to represent Gaussian distributions inside Expecta-
tion-Maximization (EM) are addressed, and a practical algorithm results.
Unlike other algorithms that have been proposed, this algorithm does not
try to compress the data to fit low-dimensional models. Instead, it models
Gaussian distributions in the ( 1)-dimensional space spanned by the

data samples. We are able to show that this algorithm converges on data
sets where low-dimensional techniques do not.

Index Terms—Expectation–Maximization, image classification, max-
imum likelihood estimation, principal component analysis, unsupervised
learning.

I. INTRODUCTION

Expectation-Maximization (EM) is a well-known technique for un-
supervised clustering. Formally, EM is an algorithm for finding the
maximum likelihood estimate (MLE) of the parameters of an under-
lying distribution from a data set with hidden or missing values. In
practice, EM is used to fit mixtures of distributions to data sets, most
often mixtures of Gaussians. The hidden variables reflect soft mem-
bership in the clusters. As a result, EM is used both to fit maximally
likely distributions to data and to assign data samples to the most likely
cluster.

This paper is about practical issues that arise when applying EM
to a mixture of Gaussians in very high-dimensional feature spaces. In
particular, we are interested in the scenario where there are far more
feature dimensions than data samples. This scenario is common in ap-
pearance-based computer vision, where the samples are images and the
features are pixels. Since even a modest-sized image has tens of thou-
sands of pixels, the number of dimensions usually exceeds the number
of samples. It should be noted, however, that this scenario also occurs
in other domains with high-dimensional data, such as genomics.

The key issues are how to represent Gaussian distributions in high
dimensions, how to estimate the probability of a point in a high-di-
mensional Gaussian distribution, and how to implement soft member-
ship. The standard approach of representing a Gaussian distribution
by its sample covariance matrix is not recommended when there are
more features than samples, since the sample covariance matrix will
be singular. A singular covariance matrix makes it difficult to estimate
the probability of a point, since the covariance matrix cannot be in-
verted. Instead, we represent Gaussian distributions as the eigenvalues
and eigenvectors of a principal component analysis (PCA) decompo-
sition of the sample covariance matrix. This is not a novel idea (see
Section III for related work). We find, however, that other methods in
the literature do not converge on very high-dimensional data. We be-
lieve this is because of practical issues of exactly how high-dimensional
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Gaussian distributions are represented, how probabilities are estimated,
and how soft membership is implemented.

We therefore explore these issues and propose a version of EM
with PCA (called HD5) for fitting high-dimensional Gaussian mixture
models to small data sets. The most surprising element of HD5 is that
it retains eigenvectors associated with zero eigenvalues. We show that
as a result of keeping these “extra” eigenvectors, HD5 converges on
high-dimensional data sets where naive approaches and low-dimen-
sional approaches (i.e., approaches based on compression) do not.

II. EXPECTATION-MAXIMIZATION

EM has become a standard technique for fitting mixtures of Gaussian
models to data. Formally, EM is an algorithm for finding the MLE of
the parameters of an underlying distribution from a data set with hidden
or missing values. When clustering using a mixture model, the distri-
bution usually is a mixture of Gaussians, and the hidden values rep-
resent the likelihoods that samples belong to clusters. EM consists of
two steps: an expectation step and a maximization step. The expectation
(E) step is to calculateQ(�;�(i�1)) = E[log p(X ;Yj�)jX ;�(i�1)].
Here, X is the observed data, Y is the hidden or missing data, and � is
the model parameters. In other words, the E step calculates the proba-
bility that the data came from the current model, given the current esti-
mates of the hidden parameters and the observed data. The maximiza-
tion (M) step finds the values of � that maximize the probability calcu-
lated in the E step. This is defined as �(i) = argmax�Q(�;�(i�1)).

A full discussion of EM is beyond the scope of this paper. For a
brief tutorial on EM, we recommend [1]; for the original source, see
[2]. It is important to note for the purposes of this paper, however, that
� = [�1; . . . ; �k] represents the parameters of k Gaussians. When the
data has more samples than features, the parameters of the individual
Gaussians �j = (�j ;�j) are usually represented as their means and
covariance matrices. Given a set of parameters �j , the probability of a
sample x can be written as

p(xj�j ;�j) =
1

(2�)(d=2)j�j j(1=2)
e
�(1=2)(x�� ) � (x�� )

:

The probability p(xj�j ;�j) is calculated in the E step to estimate the
likelihood that sample x came from cluster j, and this likelihood is
used in the M step to update the Gaussian parameters �j . Of course, the
probability p(xj�j ;�j) cannot be computed according to the equation
above when there are more features than samples because the sample
covariance matrix �j will be singular.

III. RELATED WORK

In 1996, Ghahramani and Hinton derived a version of EM for clus-
tering mixtures of reduced dimension factor analyzers [3]. Their ex-
plicit goal was to combine clustering with dimensionality reduction.
Their technique, which is based on latent variable models, clustered
data to maximize the likelihood of the data given a low-dimensional
factor loading matrix. This technique was quickly exploited by Kamb-
hatla and Leen for image compression [4] and by Frey et al. for face
recognition [5]. More recently, it was used by Baek and Draper to sup-
press background pixels prior to object recognition [6].

The disadvantage to Ghahramani’s approach is that factor analyzers
separate the common variance from the unique variance and represent
only the common variance. While this may be useful for some domains
(see [6]), it is not a true representation of an underlying Gaussian dis-
tribution. In 1999, Tipping and Bishop built on Ghahramani’s work to
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develop an EM algorithm for mixtures of reduced dimension principal
component analyzers [7].

It is well known that for Gaussian data, PCA eigenvectors represent
the axes of the underlying distribution, whereas the eigenvalues repre-
sent the variance along these axes (see [8], among others). As a result,
Tipping and Bishop’s algorithm fits a Gaussian mixture model to high-
dimensional data. The problem is that Tipping and Bishop fit a low-di-
mensional Gaussian representation to high-dimensional data. They op-
timize for Q-dimensional principal component analyzers, where Q is
much less than the ambient dimensionalityD of the data (or the number
of samples N ). As such, their process model assumes that data sam-
ples are drawn from Q-dimensional Gaussian distributions in a D-di-
mensional space, which are then corrupted by high-dimensional white
noise.

It has been hypothesized that in some domains (most notably human
faces), only a few dimensions are needed [9]. If so, Tipping and
Bishop’s PCA analyzers should be well suited to those domains. In
other domains, however, a few dimensions are not enough, and eigen-
vectors associated with very small eigenvalues may be significant. In
these cases, the difference between a low- and a high-dimensional
Gaussian representation is significant, and there is no guarantee that
algorithms for low-dimensional Gaussians will converge on high-di-
mensional data.

In general,N data samples will inhabit at most anN�1-dimensional
subspace of the D ambient dimensions. The goal of this paper is to fit
N � 1-dimensional Gaussians to every cluster. Other researchers fit
high-dimensional models by other means. Sakuma and Kobayashi pro-
pose a heuristic kernel method for fitting high-dimensional mixtures
of Gaussians to data [10], although this method lacks the probabilistic
rigor of EM. Lu et al. fit support vector machine models under sim-
ilar assumptions of small sample sizes but assume the training data is
already labeled [11]. Chan et al. fit a mixture of low-dimensional inde-
pendent component analyzers to data [12].

IV. EM WITH PCA

The goal of this paper is to use EM to fit a mixture of high-di-
mensional Gaussian distributions to small data sets. The basic idea
is to use the eigenvalues and eigenvectors from PCA decompositions
of weighted sample covariance matrices to represent high-dimensional
Gaussian distributions. An abstract (pseudo-code) description of the al-
gorithm is shown in Fig. 1.

We assume the data contains N samples, each of which is a point
in a D-dimensional space, where D is the number of ambient feature
dimensions. We assume that Nc < D, c 2 f1 . . .Cg, although this
algorithm may also be useful and will run properly in situations where
Nc is larger than D, but the number of points in any given cluster is
less than D.

Given N samples in a D-dimensional space, the data cannot span
more than an N � 1 dimensions of the original space. This implies
that we cannot fit Gaussian models represented by more than N � 1
dimensions to the data.

To relate Fig. 1 to standard EM, steps 1 and 2 bootstrap the process
by generating an initial estimate for � and p(x(i)j�j). The initial co-
variance is assumed to be spherical. Steps 3 and 4 are the M steps; step
3 maximizes the means of the clusters, and step 4 computes the eigen-
vectors and eigenvalues that represent the covariance structure. Step 5
is the E step: It calculates the probabilities of the data samples given
the clusters.

The algorithm as presented above calculates the means and eigen-
values/eigenvectors of the Gaussian distributions that maximize the

Fig. 1. EM with PCA.

likelihood of observing the data. If the goal is also to assign data sam-
ples to clusters, the maximum likelihood assignment is

8 l 6= j; p(x(i)j�j) > p(x(i)j�l)! x
(i) 2 X (j)

: (2)

As discussed in the introduction, there are three issues that arise
when using PCA to fit high-dimensional Gaussian mixture models to
data: 1) how to represent high-dimensional Gaussian distributions; 2)
how to approximate the value of a sample given a distribution; and 3)
how to maximize distribution parameters given soft membership (like-
lihood) values. Section IV-A address these issues in the context of EM
with PCA.

A. Soft Membership and Weighted PCA

PCA extracts the eigenvectors and eigenvalues of a sample covari-
ance matrix. It is well known that when data samples are drawn from
a Gaussian distribution, the PCA eigenvectors are an MLE of the prin-
ciple axes of the Gaussian distribution, whereas the eigenvalues repre-
sent the variance along these axes [8]. As a result, PCA is a method for
estimating the covariance parameters of a Gaussian distribution from
a set of data points where the PCA eigenvectors and eigenvalues are a
representation of that maximally likely distribution.

Before describing probabilistically weighted PCA, we should review
the mechanics of how standard PCA fits Gaussian distributions to un-
weighted data. LetX be a set of (unweighted) samples, and let x be the
average sample in X . Define X̂ to be the mean-subtracted data matrix,
such that the ith column of X̂ is x(i) � x. Then, PCA is the singular
value decomposition of the sample covariance matrix X̂X̂T .

To compute a probabilistically weighted PCA for cluster �j , the data
matrix X̂ must be adjusted. Define X (j) to be the weighted average of
the samples, where p(x(i)j�j) is the weight of sample i. Then, define
X̂(j) to be the weighted mean-subtracted data matrix whose ith column
is p(x(i)j�j)(x

(i) � x(j)). Now, the SVD of the matrix X̂(j)X̂(j)

provides the probabilistically weighted principal axes and variances.
(Note that this corresponds to steps #3 and #4 of Fig. 1.)
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B. Representing High-Dimensional Gaussians

Again, this paper is concerned with using PCA to represent Gaussian
distributions with covariance inside an EM algorithm; the key represen-
tational issue of which revolves around how many dimensions to keep
for each cluster. Low-dimensional techniques (such as the Mixture of
Principal Component Analyzers) assume that the underlying Gaussians
can be described inQ dimensionsQ� (N�1), and they compute just
Q eigenvectors for every cluster. In essence, any variance outside of the
firstQ dimensions is modeled as white noise. Unfortunately, estimating
the value of Q is not easy [13], and since each cluster is generated by
a different Gaussian process, there is no reason to believe that a single
value of Q exists for all clusters. The other possibility advocated here
is to keep all N �1 eigenvectors. In this way, we model each Gaussian
in as many dimensions as the data will support.

The dimensionality of a cluster varies during clustering. When clus-
tering with hard assignments, every sample is assigned to one cluster.
As a result, every cluster has a data-dependent number of samples and
therefore a data-dependent number of nonzero eigenvalues. In a soft
assignment algorithm like EM, this problem goes away in theory but
not in practice. In theory, p(x(i)j�j) 6= 0 for all samples and clus-
ters since Gaussian distributions have infinite tails. Therefore, every
cluster spans the same number of dimensions. In high dimensions, how-
ever, the probabilities p(x(i)j�j) become so small that they are within
round-off of zero. Weights with zero value lead to a data-dependent
number of nonzero eigenvalues, just as in the hard assignment case.

The solution is to represent every Gaussian with N � 1 eigenvec-
tors, even if some of those eigenvectors have zero eigenvalues. The un-
derlying model is that there is a minimum amount of variance � in all
N � 1 dimensions and that eigenvalues smaller than � are an artifact
of the sample size.

C. Probability Function

The final issue is how to estimate the probability of a data sample
given a high-dimensional Gaussian distribution, as required for step
#5 of Fig. 1. Let Rj be the matrix of eigenvectors for cluster j, and
let � = [�(1); �(2); . . . ; �(n)] be the associated eigenvalues. Then, for
any data sample x(i) 2 X , y(ij) = Rjx

(i) is the projection of x(i) into
the subspace of cluster j. If y(ij)i is the ith element of y(ij), then the
probability of sample x(i) being generated by cluster �j is

p(x(i)j�j) =
e
�(1=2) ((y )=(� ))

(2�)(Q=2)
Q

k=1

�(k)

(3)

where Q is the number of eigenvectors in Rj (and, therefore, the
number of elements in y(ij)). Note that this is just the standard proba-
bility equation for a decorrelated multivariate Gaussian distribution.

Equation (3) assumes, however, that all of the eigenvalues �(i) are
nonzero and that y(ij) = Rjxi is a lossless projection (the latter is
equivalent to assuming that ky(ji)k = kx(i)k). Algorithms that fit low-
dimensional Gaussian distributions to data violate the second assump-
tion since some dimensions are dropped, and in general, ky(ji)k <

kx(i)k. In contrast, our approach keeps all the dimensions but violates
the first assumption that all eigenvalues are nonzero. We therefore need
to approximate p(x(i)j�j) instead of computing it exactly.

The simplest approach is to use a low-dimensional Gaussian repre-
sentation (Q� (N � 1)) and ignore the dropped dimensions. As dis-
cussed by Moghaddam and Pentland [14], this greatly overestimates
p(x(i)j�j) since the dropped terms are all between zero and one and

should be multiplied with the product of the first Q dimensions. To
compensate, they include a second term

p(x(i)j�j) �

e
�(1=2) ((y )=(� ))

(2�)(Q=2)
Q

k=1

�(k)

�
e�(1=2�)(kx k �ky k )

(2��)(((N�1)�Q)=2)
(4)

where � is the average of the dropped eigenvalues, andN is the number
of samples; therefore, N � 1 is the maximum number of dimensions
that the data can span.

This equation effectively assigns an average eigenvalue � to all the
dimensions in the null space of Rj and assumes that the energy pro-
jected into the null space ofRj is evenly divided among the dimensions
of the null space. Equation (4) is used, among other places, by Tipping
and Bishop [7].

Unfortunately, Moghaddam and Pentland’s approximation still over-
estimates the probability p(x(i)j�j). kx(i) � y(ij)k is the magnitude
of the projection of x(i) into the null space of Rj . Equation (4) im-
plicitly assumes that the magnitude of the projection of x is evenly
distributed. It approximates p(x(i)j�j) by using the average null space
magnitude for every null-space dimension. Of course, the probability
drops off rapidly with distance, and if the projections of x onto the var-
ious null-space dimensions are not equal to each other, the true proba-
bility p(x(i)j�j) may be significantly lower than the one estimated by
(4).

Computers are getting faster, however, and there is often no need to
discard dimensions. We approximate p(x(i)j�j) by keeping all N � 1
dimensions and assigning a minimal eigenvalue of � to every dimen-
sion. As a result, ky(ij)k = kx(i)k, and

p(x(i)j�j) �
e
�(1=2) ((y )=(max(�;� )))

(2�)(Q=2)
Q

k=1

max(�; �(k) )

: (5)

We show in Section V that the accuracy of the estimate of p(x(i)j�j)
matters. The underestimates caused by (3) (with Q < (N � 1)) and
(4) will prevent EM from converging on high-dimensional data sets.

V. EXPERIMENTS ON SYNTHETIC DATA

This paper presents an algorithm for fitting mixtures of high-dimen-
sional Gaussian distributions to small data sets, under the assumptions
that 1) the data will be more accurately modeled by high-dimensional
Gaussians than low-dimensional Gaussians, and 2) (5) is a better ap-
proximation to p(x(i)j�j) than (4) [or (3) with Q < (N � 1)]. In this
section, we test these assumptions by comparing the performance of
various versions of EM with PCA on synthetic data.

In particular, we test four versions of EM:

• High-dimensional Gaussians with (5). This is the version
we advocate. All clusters are represented by N � 1 eigen-
vectors, and p(x(i)j�j) is approximated using (5). This algo-
rithm is labeled High Dimensional with (5) (HD5) in Table I.

• High-dimensional Gaussians with (3). Clusters are repre-
sented by up to N � 1 eigenvectors, but eigenvectors asso-
ciated with zero eigenvalues are discarded, and p(x(i)j�j) is
approximated using (3). This algorithm is labeled HD3.

• Low-dimensional Gaussians with (3). Clusters are repre-
sented by Q eigenvectors, Q < (N � 1), and p(x(i)j�j) is
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TABLE I
RECOGNITION ACCURACIES (PERCENTAGES) FOR FOUR VERSIONS OF EM WITH PCA ON NINE SYNTHETIC DATA SETS. THE FOUR VARIANTS OF EM WITH PCA

DIFFER IN TERMS OF THE NUMBER OF EIGENVECTORS USED TO REPRESENT EACH CLUSTER, AND THE EQUATION USED TO APPROXIMATE p(x j� ), THE

PROBABILITY OF A SAMPLE GIVEN A CLUSTER. LOW-DIMENSIONAL (LD) VERSIONS REPRESENT CLUSTERS USING A FIXED NUMBER OF EIGENVECTORS Q; LD
ALGORITHMS ARE TESTED WITH FIVE, 30, AND 60 EIGENVECTORS, RESPECTIVELY. HIGH-DIMENSIONAL VERSIONS (HD) REPRESENT CLUSTERS WITH N � 1
EIGENVECTORS (IN THE CASE OF HD5) OR THE SET OF ALL EIGENVECTORS ASSOCIATED WITH NONZERO EIGENVALUES (IN THE CASE OF HD3). LD3 AND HD3

APPROXIMATE p(x j� ) USING (3), WHEREAS LD4 APPROXIMATE p(x j� ) USING (4), AND HD5 APPROXIMATES IT WITH (5). THE DATA SETS DIFFER

ACCORDING TO THE NUMBER OF CLUSTERS K , WHICH IS EITHER TWO, FIVE, OR TEN, AND THE DISTRIBUTION OF DISTANCES BETWEEN THE CLUSTER

MEANS, WHICH HAS A MEAN OF 5.0 (EASY), 2.5 (MODERATE), OR 0.0 (HARD)

approximated using (3) (effectively ignoring the discarded
dimensions). This algorithm is labeled LD3.

• Low-dimensional Gaussians with (4). Clusters are repre-
sented by Q eigenvectors, Q < (N � 1), and p(x(i)j�j) is
approximated using (4) to compensate for the discarded di-
mensions. This algorithm is labeled LD4.

All four versions of EM are tested on synthetic data sets with 500
dimensions. The data sets are generated by randomly drawing a small
number of samples from 500 dimensional Gaussian processes.

The data sets are created by first randomly generating Gaussian pro-
cesses from a set of hyper-priors. For the experiments reported in this
paper, we generated either two, five, or ten Gaussian processes per data
set and sampled each process 50 times, for a total of 100, 250, or 500
samples per data set. The hyper-priors specify that the standard devi-
ation of the standard deviations of the principal axes is one. For the
easiest data sets, the distribution of distances between process means
has a mean of 5.0 and a standard deviation of 1.0; for the moderate data
sets, the distribution of means has a mean signed distance of 2.5; and
for the hardest data sets (shown in the bottom three lines of Table I),
the mean signed distance between cluster centers is zero.

Mixtures of Gaussians are evaluated by their classification accuracy.
Clustering algorithms are run until convergence, and then, every sample
is assigned to its most likely cluster. Individual Gaussians are labeled
according to the process that generated the plurality of their samples,
and the accuracy of the mixture is measured as the percent of samples
assigned to their correct clusters.

Table I shows the classification accuracy of all four variants of EM
with PCA over nine synthetic problems. Since the low-dimensional ver-
sions of EM with PCA are parameterized by the number of subspace
dimensionsQ, they are tested with three different values ofQ (five, 30,
60) on each problem. In addition, since EM is nondeterministic (due to
the random selection of initial cluster centers), each test is repeated
ten times. Table I shows both the mean recognition accuracy and the
standard deviations of the accuracies across runs. On some data sets,
many versions of EM consistently converge on solutions where a single
cluster accounts for all of the data. In these cases, the recognition ac-
curacy is (1=K), and the standard deviation of the recognition rate is

zero. The maximum recognition rates for each data set are shown in
boldface.

In general, HD5 outperforms other versions of EM with PCA; it has
the highest recognition rate in six of nine trials. In addition, in general,
the recognition rate drops with the distance between the cluster centers.
This makes sense; it is difficult to reliably separate points drawn from
distributions with very similar means.

More interestingly, HD5 always outperforms the other forms of EM
with PCA when the number of clusters is large (in this case, ten). When
the number of clusters is small, the low-dimensional techniques also
perform well, assuming that they are restricted to a very small number
of dimensions (e.g., five). Apparently, it is possible to separate points
from two clusters by looking at just a few of the most widely varying
dimensions, but this strategy seems to break down as the number of
clusters increases or as the number of subspace dimensions increases.

These experiments suggest that HD5 is the best option for fitting
mixtures of high-dimensional Gaussians to small data sets. This is the
version of the algorithm that represents every cluster with (N � 1)
eigenvectors, even if some of the eigenvalues are zero, and estimates
p(x(i)j�j) using (5). In essence, it assumes a minimum variation of �
along all N � 1 dimensions.

VI. EXPLANATION OF EXPERIMENTAL RESULTS

Why does HD5 empirically outperform the other three versions of
EM with PCA? To explain why this happens, we created the two-di-
mensional example in the top panel of Fig. 2. This example shows sam-
ples drawn from two underlying processes, labeled with x’s and y’s.
Ideally, EM should converge on a solution where the x’s are in one
cluster and the y’s in another. The cluster of y’s has no variance in the
horizontal dimension, however. It therefore has only one eigenvector
with a nonzero eigenvalue, and this eigenvector runs vertically through
the cluster.

The HD3 algorithm will begin to converge on the correct solution,
putting all the x’s in one category and all the y’s in the other. As it does
this, however, the y cluster is left with only one nonzero eigenvalue.
When (3) estimates the probability that an x sample is in cluster y, it
does so by projecting the x sample onto the horizontal eigenvector of
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Fig. 2. Two-dimensional scenario in which EM may not converge. The top
frame shows two sets of points (x’s and y’s), with dashed lines showing the
eigenvectors when they are correctly clustered. The lower frame shows what
happens when the y cluster has only one nonzero eigenvalue: the x’s project
near the middle of the single eigenvector associated with the y cluster, causing
the probability that the x’s are in the y cluster to be greatly overestimated.

the y cluster and, therefore, grossly overestimates this probability, in
effect adding the x sample into the y cluster.

In this example, the low-dimensional algorithms would also be lim-
ited to representing each cluster with a single eigenvector, leading to
similar confusion. In effect, the problem occurs when high-dimensional
representations collapse to smaller numbers of dimensions because of
eigenvectors with zero eigenvalues or when critical information is in
dimensions not included in low-dimensional representations.

This simple, two-dimensional example has at least three differences
from the high-dimensional cases encountered in practice. First, the di-
mensionality of the cluster description only becomes smaller in the
two-dimensional case because we artificially constructed a data set with
no variance in the horizontal dimension. When the number of samples
exceeds the number of ambient data dimensions, however, the dimen-
sionality of a cluster is limited by the number of samples in the cluster,
and as clusters converge on subsets of samples, their dimensionality
is inevitably reduced. Second, since EM uses soft assignment, every
sample should always have a nonzero probability of belonging to any
cluster; therefore, in theory, the data dimensionality of every cluster
is N � 1. In practice, however, the probabilities in high-dimensional
spaces are so small that they round to zero;1 therefore, samples are ef-
fectively eliminated from clusters, and the dimensionality of those clus-
ters drops. Third and finally, Moghaddam and Pentland’s approxima-

1It does not matter how much precision is used here; very small probabilities
lead to very small eigenvalues, which in turn create even smaller probabilities
until eventually, both the eigenvalues and the probabilities round to zero.

Fig. 3. Plot comparing number of dimensions kept (x-axis) to the classification
accuracy (y-axis).

tion for p(x(i)j�j) (4) would have solved this example because there is
only one null space dimension. As the dimensionality increases, how-
ever, the difference between the projection onto the average null space
dimension and the projection onto a particular null space dimension in-
creases, and (4) overestimates the probability of a given principal com-
ponent analyzer generating a data point that was actually generated by
a different PCA. As a result, the phenomenon illustrated in Fig. 2 al-
most always occurs in high-dimensional data.

The HD5 version of EM with PCA solves this problem by modeling
every cluster with N � 1 eigenvectors, including eigenvectors associ-
ated with zero eigenvalues. This ensures that no sample will ever lie in
the null space of any other cluster. The probabilities p(x(i)j�j) are then
estimated using (5).

To further illustrate our point that keeping too few subspace dimen-
sions results in inferior, if not entirely useless, classifications, we per-
formed two additional experiments. The first experiment relates the
number of subspace dimensions kept to the classification accuracy. The
second experiment projects the data samples into the inherent and null
spaces of each cluster and measures the relative magnitudes of the two
projections. Both experiments use data generated using the MPPCA
generative process. Therefore, the number of inherent dimensions of
the generative process is selected at random from between one and 499.
Each data set has an ambient dimensionality of 500, 500 data points,
and ten clusters. The means are chosen from a uniform distribution with
a range of �5. The covariance of each cluster is also selected from a
uniform distribution with a range of [0; 1].

The results from the first of these experiments are shown in Fig. 3.
The values on the x-axis represent the number of subspace dimensions
kept while the y-axis represents classification accuracy. These results
were computed by running the LD3 version of our algorithm with in-
creasing values ofQ on the same 30 data sets. As can be seen, retaining
a large number of subspace dimensions has a beneficial effect on classi-
fication accuracy. It should be noted that classification accuracy reaches
its highest point before Q = 499. Most likely, this is a result of the
random starting locations between runs of each version. This suggests
that keeping all N � 1 subspace dimensions is not entirely necessary.
However, choosing a lower value can be risky since the choice will be
arbitrary and domain-specific. Therefore, we still recommend keeping
all N � 1 dimensions.

The second experiment projected data samples into the null and in-
herent spaces of each cluster. Table II shows the average magnitude
over all samples and clusters of these projections, measured as a per-
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TABLE II
RESULTS OF THE CALCULATIONS OF THE PERCENT MAGNITUDE THAT

FALLS INTO THE INHERENT AND NULL SPACES OF EACH CLUSTER FOR

INTER- AND INTRA-CLUSTER PROJECTIONS

centage of the original sample length. The table is divided into intra-
and inter-cluster projections, depending on whether the sample is being
projected into the most likely cluster (intra-cluster) or another cluster
(inter-cluster). The values in the second column are also known as the
reconstruction errors and may be computed by kx� UTxk [15]. In this
experiment, the inherent space was taken to the be the Nj � 1 domi-
nant eigenvectors, where Nj is the number of data points belonging to
cluster j.

As can be seen across the top row of Table II, nearly all of each
sample’s magnitude lies in the inherent space of its most likely
cluster, with virtually no variance. This suggests that the probability
of a sample belonging to a cluster can be accurately estimated by
simply using (3) when the true likelihood of membership is high.
Unfortunately, the bottom row shows that, on average, well over half
of a sample’s magnitude lies in the null space of the other clusters. As
a result, the likelihood of a sample belonging to one of these clusters
may be grossly overestimated, leading to assignment errors and/or
instability. This is exactly the type of error illustrated in Fig. 2.

The data sets used to generate Table II neglect one pathological case
in which the means of the underlying Gaussians differ, but their covari-
ance matrices are the same. In this rare case, all of the techniques con-
sidered above should work about equally well, although HD5 would be
more computationally expensive than the other options.

VII. QUALITATIVE EXPERIMENTS ON REAL IMAGES

As computer vision researchers, we are suspicious when results are
only presented on synthetic data. It may be that an algorithm works
well on strictly Gaussian data but not on real data, which tends to come
from messier distributions. In this case, the history was the opposite.
Based on the recommendations in [14], we first implemented EM with
Q dimensions per Gaussian, estimating probabilities according to (4).
When this did not converge on real image sets, we began exploring
other options.

To demonstrate that HD5 converges on real images, we ran it on a
data set of 119 images: 60 images of cat faces and 59 images of dog
faces. Each image consists of 64� 64 pixels, resulting in 4096 dimen-
sions. A run using four clusters is shown in Figs. 4–6. Fig. 4 shows the
images belonging to each cluster. Fig. 5 shows the mean value (�j) for
each cluster, whereas Fig. 6 shows the first five eigenvectors for each
cluster. The eigenvectors are sorted in decreasing order with respect to
their eigenvalues. Therefore, the images on the left in Fig. 6 show the
eigenvectors with the greatest variance in their respective dimensions.

The interpretation of exactly what is being clustered is subjective.
Looking at the images in Fig. 4, we hypothesize that clusters one and
two are clustering dark and light cats, respectively. Clusters three and
four appear to cluster dark and light dogs. This conjecture is supported
by data displayed in Fig. 5. Looking at the mean images suggests that
the clusters are separating data by animal and level of brightness. The
eigenvector data shown in Fig. 6 is more difficult to interpret. For
example, the eigenvectors associated with the first cluster (dark cats)
shows that the primary source of variance comes from the color of

Fig. 4. Images showing cluster membership for a run of HD5 with four
clusters.
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Fig. 5. Cluster centers (� ) for the clusters shown in Fig. 4.

Fig. 6. First five eigenvalues for each of the clusters in Fig. 4.

the background. The second eigenvector appears to account for the
varying darkness of the ears of the cat as well as whether or not the
nose area has a patch of bright fur. The third eigenvector appears to be
primarily accounting for the presence of a patch of bright fur near the
nose.

VIII. DISCUSSION

We have presented an algorithm for fitting a mixture of Gaussians
model to high-dimensional data using EM. Like previous algorithms,

we represent Gaussian clusters in high dimensions through the eigen-
vectors and eigenvalues of their PCA decomposition. Unlike previous
algorithms, we do not compress the data to find low-dimensional rep-
resentations of clusters. Instead, we represent clusters in the (N � 1)
dimensional subspace spanned by the N data samples.

Although the basic idea of using PCA to fit Gaussian distributions to
small data sets is not surprising, we find that EM will only perform well
if all clusters are represented by N � 1 eigenvectors, even if some of
those eigenvectors are associated with zero eigenvalues. We therefore
keep the complete set of eigenvectors for every cluster and estimate
p(x(i)j�j) by assigning a minimal value of � to every eigenvalue, as
shown in (5). The result is a stable, albeit computationally expensive,
algorithm for clustering data in high-dimensional spaces. In addition
to the experiments described here, this algorithm has been tested and
shown to converge on as few as 90 samples with as many as 10 000
dimensions.
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