Groundwater microbiology

Marek Kirs

Water Resources Research Center

Plan

Lecture 1

- Crash course to microbiology
- Groundwater microbiology

Lecture 2

- Pathogens and groundwater quality
- Drinking water treatment

Plan

Lecture 1

- Crash course to microbiology
- Groundwater microbiology

Lecture 2

- Pathogens and groundwater quality
- Drinking water treatment

Figure 1 | A current view of the tree of life, encompassing the total diversity represented by sequenced genomes. The tree includes 92 named bacterial

Figure 1 | A current view of the tree of life, encompassing the total diversity represented by sequenced genomes. The tree includes 92 named bacterial

Microbial diversity

- Richness
- Evenness
- Diversity

Alfa-, beta-, and gammadiversity

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Metabolic diversity

Energy source:

- Phototrophs
- Chemotrophs

Carbon source:

- Autotrophs
- Heterotrophs

Metabolic diversity

	ENERGY source for generating ATP	CARBON sourcse	Microbial examples
<u>Photo</u> autotroph	<u>Light (photon)</u>	CO2	Cyanobacteria
Chemo autotroph	Inorganic compounds (H ₂ , CO, NH ₃ , NO ₂ ,H ₂ S, S, Fe ²⁺)	CO2	methanogens, halophiles, sulfur oxidizers and reducers, nitrifiers, anammox bacteria, and thermoacidophiles.
<u>Photo</u> heterotroph	<u>Light (</u> photon)	CO ₂ and simple organic compounds	purple non-sulfur bacteria, green non-sulfur bacteria, heliobacteria
Chemo heterotroph	Preformed <i>organic</i> compounds	Preformed organic matter	Most bacteria, fungi and protozoa

Mixotrophs

Mainly used for protists, but bacteria to!

Most abundant bacteria in oligotrophic marine waters are mixotrophic

Huge impact on nutrient cycles! Climate Change! Fisheries!

Microbial world: Huge knowledge gaps. Perhaps around trillion microbial species,

Scientists have pinpointed the evolutionary identities of about half of animal- or plant-dwelling microbes to at least the genus level of specificity. But the comparatively enormous populations of microbes inhabiting other environments remain largely mysterious. The phylum- or higher-level classifications of a third of microbes living in soil, for example, are unknown.

Freshwater

OTUs vs species

Source: "Phylogenetically Novel Uncultured Microbial Cells Dominate Earth Microbiomes," by Karen G. Lloyd et al., in mSystems, Vol. 3, No. 5; September/October 2018

Unique traits of microbes

- Small size
- Ubiquitous distribution through Earth's habitats
- High specific surface areas
- Potentially high rate of metabolic activity
- Potentially rapid growth rate
- Physiologically responsive
- Unrivaled nutritional diversity
- Unrivaled enzymatic diversity

Ecological consequences of microbes

- Geochemical cycling of elements
- Detoxification of organic and inorganic pollutants
- Release of essential limiting nutrients from the biomass
- Maintaining the chemical composition of soil, sediment, water, and atmosphere required by other forms of life
- Major impact on environmental quality, agriculture, and climate

Microbial diversity is the key to human survival

Environmental Microbiology: Core Concepts

• Primary directive of microbial life: survive, maintenance, generate energy, grow and replicate

• No method is perfect

• Several independent studies (papers)

• Every form (trait) has its function

Plan

Lecture 1

- Crash course to microbiology
- Groundwater microbiology

Lecture 2

- Pathogens and groundwater quality
- Drinking water treatment

Microbes in (Hawaii) Groundwater

Why microbes in GW matter?

- •No meaningful alternative for island communities
- •Changing climate and anthropogenic microbial contaminants: health risk and ecosystem functioning
- •GW microbial communities are important in subsurface biogeochemical cycling and biodegradation
- •We know nothing about microbes in HI GW, except indicators
- •Detect change
- •Important when making management decisions

https://www.boardofwatersupply.com/water-resources/the-water-cycle

The study

Methods

- Collection
- DNA extraction
- Library preparation
- Sequencing
- Bioinformatics pipeline and analyses

Number of Sequences

Distinct bacterial communities in tropical island aquifers

Marek Kirs 🔄, Veljo Kisand, Craig E. Nelson, Tineill Dudoit, Philip S. Moravcik Published: April 30, 2020 • https://doi.org/10.1371/journal.pone.0232265

Full of life, amazing diversity!						
		_		n sca		
	# of	# of	Richness	Dive	ersity	Evenness
	samples	sequences				
			OTUs per	Shannon's	Fisher α	J
			sample	<mark>(</mark> (H)		
Ground	37	1,751,074	2,071	5.37	468.9	0.71
water			(185-	(2.13-6.95)	(23.1-	(0.41-0.85)
			4,373)		1257.2)	
Soil	32	1,407,413	2,397	5.98	571.6	0.78
			(190-	(2.72-6.89)	(34.1-956.8)	(0.51-0.87)
			3,937)			

Distinct bacterial communities in tropical island aquifers

Marek Kirs , Veljo Kisand, Craig E. Nelson, Tineill Dudoit, Philip S. Moravcik Published: April 30, 2020 • https://doi.org/10.1371/journal.pone.0232265

Full of amazing life!

Relative abundance (%) of top ten phyla in the groundwater and soil samples.

Distinct bacterial communities in tropical island aquifers

arek Kirs 🛃, Veljo Kisand, Craig E. Nelson, Tineill Dudoit, Philip S. Moravcik

Published: April 30, 2020 • https://doi.org/10.1371/journal.pone.0232265

Figure 1 | A current view of the tree of life, encompassing the total diversity represented by sequenced genomes. The tree includes 92 named bacterial

Top 10 phyla, classes, genera

Top ten phyla (left), classes (middle), and genera (right) based on the sequence abundance in the OAHU aquifers (ENTRA – central, HONOLULU – Honolulu, NORTH – North, RL HAR – Pearl Harbor, WAIANAE – Waianae, and WINDWARD – Windward aquifers)

Distinct bacterial communities in tropical island aquifers

eljo Kisand, Craig E. Nelson, Tineill Dudoit, Philip S. Moravcik Published: April 30, 2020 • https://doi.org/10.1371/journal.pone.0232265

PC1

ΓU

CHEMOAUTOTROPHS!

Distinct bacterial communities in tropical island aquifers

/larek Kirs 🔯, Veljo Kisand, Craig E. Nelson, Tineill Dudoit, Philip S. Moravci

Published: April 30, 2020 • https://doi.org/10.1371/journal.pone.0232265

Core Groundwater Microbiome

Aquifer Type	Portion of core	Portion of core
	OTUs ¹ (%)	sequences (%)
Basal Aquifer	Alor 0.63 %	31.8%
× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	er u 7	(16.2%-62.0%)
Dike Aquifer	0.31 %	لمر
	Winner	(0.1%-31.5%) ala

Distinct bacterial communities in tropical island aquifers

Marek Kirs , Veljo Kisand, Craig E. Nelson, Tineill Dudoit, Philip S. Moravcik Published: April 30, 2020 • https://doi.org/10.1371/journal.pone.0232265

Distinct bacterial communities in tropical island aquifers

Marek Kirs 🔯, Veljo Kisand, Craig E. Nelson, Tineill Dudoit, Philip S. Moravcik

Published: April 30, 2020 • https://doi.org/10.1371/journal.pone.0232265

HI Groundwater Quality: indicators

•16.2% of groundwater samples were positive for total coliforms (GM: 0.6 MPN/100ml; Range: <1 to 18.9 MPN/100ml)

•No *E. coli* or *C. perfringens* or F+ coliphages were detected in the groundwater

•No sewage-specific markers were detected in the groundwater

Do not get scared, it is before chlorination!

GW Study Summary

- GW not sterile, but distinct and diverse bacterial communities
- High abundance of chemoautotrophs
- A few core OTUs, but abundant
- SO4, NO3, and Na correlated significantly with gw. bacterial community composition
- Relatively good groundwater quality
- Likely large adaptive potential

Plan

Lecture 1

- Crash course to microbiology
- Groundwater microbiology

Lecture 2

- Pathogens and groundwater quality
- Drinking water treatment

Why water quality matters?

Public health hospital costs from USA drinking water exposures

- CDC estimate drinking water disease costs > \$970 m/y
 - –Less so fecal pathogens, largely Legionnaires' disease, otitis externa, and non-tuberculous mycobacteria causing >40 000 hospitalizations/year

Cryptosporidiosis\$46MGiardiasis\$34MLegionnaires' disease\$434MNTM infection/Pulmonary\$426M/ \$195M	Disease	Annual costs
Giardiasis\$34MLegionnaires' disease\$434MNTM infection/Pulmonary\$426M/ \$195M	Cryptosporidiosis	\$46M
Legionnaires' disease\$434MNTM infection/Pulmonary\$426M/ \$195M	Giardiasis	\$34M
NTM infection/Pulmonary \$426M/ \$195M	Legionnaires' disease	\$434M
	NTM infection/Pulmonary	\$426M/ \$195M

Collier et al. (2012) Epi Inf 140: 2003-2013

NTM –non-tuberculosis mycobacteria
Etiological agents and percentages for 780 drinking water outbreaks, 1971-2006 USA

Top 10 Causes – Outbreaks in Public Water Systems in the US (CDC.gov)

- <u>Giardia</u>
- <u>Legionella</u>
- <u>Norovirus</u>
- <u>Shigella</u>
- <u>Campylobacter</u>
- <u>Copper</u>
- <u>Salmonella</u>
- Hepatitis A
- <u>Cryptosporidium</u>
- <u>E. coli</u>, <u>excess fluoride</u> (tie)

Drinking water source

In US: 68% surface water 32% groundwater <1% other

In Hawaii: >99% groundwater

https://www.otonabeeconservation.co m/new-road-signs-identify-municipaldrinking-water-protection-zones/

FIGURE 1-2 Number of waterborne disease outbreaks by year and water type for the United States: 1989-2000 (n = 278). SOURCE: Outbreak data through 2000 from the CDC's National Waterborne Diseases Outbreak Surveillance System.

NRC 2004 Indicators of waterborne Pathogens

How can GW get contaminated?

Groundwater under the direct influence of surface water (GWUDISW or GWUDI)

- Permeability
- Location and depth of the well
- Aquifer composition
- Proximity to pollution source
- Well and spring construction

Koch postulates (1890) to define a pathogen

- The bacteria must be present in every case of the disease.
- The bacteria must be isolated from the host with the disease and grown in pure culture.
- The specific disease must be reproduced when a pure culture of the bacteria is inoculated into a healthy susceptible host.
- The bacteria must be recoverable from the experimentally infected host.

Pathogens (the health concern)

- Pathogens
- Infection (m. dirane)
- Infectious dose
- Frank pathogen vs opportunistic pathogen
- Incubation time
 - Origin: host or the environment
 - Die-off
 - Enteric pathogens
 - Water-borne disease

* Primarily from contact with highly contaminated surface waters.

Okafor, 2011

Survival

- In general, viral and protozoan pathogens survive longer than bacteria
- Survival depends from the environment (temperature, moisture, etc)

	Excreted load ^a		Survival (months) ^b										
		1	2	3	4	5	6	7	8	9	10	11	12
1. Campylobacter spp.	107			-	-	-	-	-		-	-	-	-
2. Giardia lamblia	10 ⁵		_	-	-	- <u> </u>	-	-	- <u> </u>	-	- <u> </u>	-	-
3. <i>Shigella</i> spp.	107			-	-	- İ	-	- İ	-	- 	-		
4. Vibrio cholerae	107			-		- <u> </u>		-	1	-	-		
5. <i>Salmonella</i> spp.	108			1	Í					-			-
6. Escherichia coli (pathogens)	10 ⁸	-				- 	-	-		-	-		-
7. Enteroviruses	107	-						- <u> </u>		-		-	-
8. Hepatitis A virus	106	-				-	- <u> </u>	-	-	-		-	-
9. Ancylostoma duodenale	10 ²					-	-	-	-	-		_	-
10. <i>Taenia saginata</i>	104			_		1	1	1	1	1 -		-	-
11. Ascaris lumbricoides	104					Bates						1	

^a Typical average number of organisms/g feces

^b Estimated average life of infective stage at 20–30°C. (Modified from Feachem *et al.*, 1983).

FIGURE 22.26 Survival times of enteric pathogens in water, wastewater, soil, and on crops.

Gerba in Mayer, et al, 2009

TABLE 22.13 Environmental Factors AffectingEnteric Pathogen Survival in Natural Waters

Factor	Remarks
Temperature	Probably the most important factor; longer survival at lower temperatures; freezing kills bacteria and protozoan parasites, but prolongs virus survival.
Moisture	Low moisture content in soil can reduce bacterial populations.
Light	UV in sunlight is harmful.
рН	Most are stable at pH values of natural waters. Enteric bacteria are less stable at pH >9 and pH <6 .
Salts	Some viruses are protected against heat inactivation by the presence of certain cations.
Organic matter	The presence of sewage usually results in longer survival.
Suspended solids or sediments	Association with solids prolongs survival of enteric bacteria and virus.
Biological factors	Native microflora is usually antagonistic.

Agent	Incubation period	Modes of transmission	Duration of illness
Adenovirus	8–10 days	Fecal–oral–respiratory	8 days
Campylobacter jejuni	3–5 days	Food ingestion, direct contact	2–10 days
Cryptosporidium	2–14 days	Food or water ingestion, direct and indirect contact	Weeks to months
Escherichia coli ETEC	16–72 h	Food or water ingestion	3–5 days
EPEC	16–48 h	Food or water ingestion, direct and indirect contact	5–12 days
EHEC	72–120 h	Food/ingestion, direct or indirect contact	2–15 days
Giardia lamblia	7–14 days	Food or water ingestion, direct and indirect contact	Weeks to months
Norovirus	24–48 h	Food or water ingestion, direct and indirect contact, aerosol?	1–2 days
Rotavirus	24–72 h	Direct and indirect contact	4–6 days
Hepatitis A	30–60 days	Hepatitis	2–4 weeks
Salmonella	16–72 h	Food ingestion, direct and indirect contact	2–7 days
Shigella	16–72 h	Food or water ingestion, direct and indirect contact	2–7 days
Yersinia enterocolitica	3–7 days	Food ingestion, direct contact	1–3 weeks

TABLE 22.1 Incubation Time for Common Enteric Pathogens

Gerba in Mayer, et al, 2009

TABLE 22.2 Concentration of Enteric Pathogens in

Feces

Organism	Per gram of feces
Protozoan parasites	10 ⁶ -10 ⁷
Helminths	To cause shness,
Ascaris	10 ⁴ -10 ⁵
Enteric viruses	ever or tash, is the in
Enteroviruses	10 ³ -10 ⁷
Rotavirus	10 ¹⁰
Adenovirus	⇒10 ¹¹
Enteric bacteria	alear response respo
Salmonella spp.	$10^4 - 10^{10}$
Shigella	10 ⁵ -10 ⁹
Indicator bacteria	a to used and stole
Coliform	10 ⁷ -10 ⁹
Fecal coliform	10 ⁶ -10 ⁹

Gerba in Mayer, et al, 2009

Pathogen	Health significance	Persistence in water supplies ^a	Resistance to	Relative	Important
Bacteria				meenvity	animal source
Burkholderia pseudomallei	Low	May multip	Low	Low	NI-
Campylobacter jejuni, C. coli	High	Moderate	Low	Moderate	No
Escherichia coli – Pathogenic ^d	High	Moderate	Low	Ivioderate	Yes
E. coli – Enterohaemorrhagic	High	Moderate	Low	Low	Yes
Legionella spp.	High	Multiply	Low	Moderate	Yes
Non-tuberculous mycobacteria	Low	Multiply	High	Moderate	No
Pseudomonas aeruginosa ^c	Moderate	May multipl	Moderate	Low	No
Salmonella typhi	High	Moderate	Low	Low	No
Other salmonellae	High	Max multipl	Low	Low	No
Shigella spp.	High	Short	Low	Low	Yes
Vibrio cholerae	High	Short	Low	Moderate	No
Yersinia enterocolitica	High	Long	LOW	Low	No
Viruses		LUIE	LOW	Low	Yes
Adenoviruses	High	Iong	Madarata		
Enteroviruses	High	Long	Moderate	High	No
Hepatitis A virus	High	Long	Moderate	High	No
Hepatitis E virus	High	Long	Moderate	High	No
Noroviruses and sapoviruses	Hioh	Long	Moderate	High	Potentially
Rotaviruses	High	Long	Moderate	High	Potentially
Protozoa	***5**	LOIIg	Moderate	High	No
Acanthamoeba spp.	High	Long			No
Crvptosporidium parvum	High	Long	High	High	No
Cvclospora cavetanensis	High	Long	High	High	Yes
Entamoeba histolytica	High	Long	High	High	No
Giardia intestinalis	Lish	Moderate	High	High	No
Naegleria fowleri	Lich	Moderate	High	High	Yes
Toxonlasma gondii	Llich	May multiply	High	High	No
- Helminths	nign	Long	High	High	Yes
Dracunculus medinensis	IT:-h				
Chistosoma son	High	Moderate	Moderate	High	No
	High	Short	Moderate	High	Yes

 Table 8.1
 Waterborne pathogens and their significance in water supplies (From Anonymous 2006a. With permission)

Note: Waterborne transmission of the pathogens listed has been confirmed by epidemiological studies and case histories. Part of the demonstration of pathogenicity involves reproducing the disease in suitable hosts. Experimental studies in which volunteers are exposed to known numbers of pathogens provide relative information. As most studies are done with healthy adult volunteers, such data are applicable to only a part of the exposed population, and extrapolation to more sensitive groups is an issue that remains to be studied in more detail

^aDetection period for infective stage in water at 20°C: short, up to 1 week; moderate, 1 week to 1 month; long, over 1 month ^bWhen the infective stage is freely suspended in water treated at conventional doses and contact times. Resistance moderate, agent

may not be completely destroyed °From experiments with human volunteers or from epidemiological evidence

dIncludes enteropathogenic, enterotoxigenic and enteroinvasive

eMain route of infection is by skin contact, but can infect immunosuppressed or cancer patients orally ^fIn warm water

Okafor, 2011

Naegleria fowleri

amoeboflagellate

- https://www.cdc.gov/parasites/naegleria/index.html
- World-wide in freshwater, sediments, soils
- >35°C amoeba transforms to flagellated form which allows it to swim
- Swims to nose, and follows nerve to brain, produces toxin that liquefies brain
- Massive headache, death in 4-6 days, 95-97% fatality
- Prognosis after death...(amphotericin B if diagnosed early)

Focal hemorrhage and necrosis in frontal cortex due to Naegleria fowleri

8 Texas cities were alerted to a brain-eating amoeba found in water supply

By Lauren M. Johnson and Artemis Moshtaghian, CNN ① Updated 5:49 PM ET, Sat September 26, 2020

Multiple agencies working to clear Texas town's water supply of brain-eating amoeba

BY STEFAN STEVENSON SEPTEMBER 29, 2020 02:42 PM

y f 🖬 🤿

Naegleria fowleri, or "brain-eating amoeba", is an incredibly rare and deadly microorganism that can be found in warm freshwater. BY MCCLATCHY

'Brain-eating' amoeba in Texas city's water supply kills 6-year-old

By Rachael Rettner - Senior Writer 4 days ago

After the boy's death, officials detected the deadly amoeba in the city's water supply.

Frost Advisory Is In Effect

Texas officials say 2-3 months until water safe after brain-eating amoeba kills 6-year-old

Officials said they will continue to test the city's water once the process is complete to make sure it's safe.

What and Why we measure?

 Too many potential pathogens, methods tedious, difficult, and time consuming

• Microbial indicators

• What do microbial indicators indicate?

Some of the microbial indicators

- Total coliforms
- Fecal coliforms
- Escherichia coli
- Enterococci

taxonomically nonsense)

Problems:

- Regrowth in aquatic and/or soil environments
- Regrowth in distribution system (TC)
- If regrowth Not indicative of health threat or risk
- No relationship with protozoa or viruses or environmental pathogens
- E. coli die-off rapid (faster than pathogens) in marine environments

Some examples of alternative microbial indicators

- F+ and somatic coliphages
- Pros: good proxy for viruses
- Cons: concentrations relatively low in sewage, methods tedious

Clostridium perfringens (spores)

- Pros: obligate anaerobe
- di joring
- Cons: spores can survive long in sediments

Safe Drinking Water Act

- Total Coliform Rule -treatment efficiency and distribution system integrity
- Surface Water Treatment Rule treatment efficiency and distribution system integrity
- Groundwater Rule fecal contamination in source groundwater
- Drinking Water Contaminant Candidate List (CCL) treatment and distribution system

Regulations dependent from how many people are served

Public Water System - 15 service connections or serves an average 25 or more people at least 60 days a year

Hawaii Drinking Water Regulations

- HAR Title 11 Chapter 20 (2017)
- Not just microbiology, also includes organic and inorganic contaminants
- Regulates sampling frequency, depends how many people served
- Regulates until water reaches your house, you are responsible for pluming (lead) and its integrity (entry of contaminants)
- <u>Distribution system</u> is not compliant if *E.coli* positive sample follows total coliform positive sample or total coliform positive samples follows *E. coli* positive sample. Failure to collect is also considered as system failure
- *E.coli* positive sample triggers boil-water notice
- Drinking Water samples should also not contain *Cryptosporidium, Giardia lambia* and *Legionella* as well as free from enteric viruses (coliphage as proxy). Used to evaluate <u>treatment</u>.

,000 ,000 ,000

3244

\$11-20-9,1

41 001	to	50 000	50
50,001		50,000	50
50,001	10	59,000	00
59,001	to	70,000	70
70,001	to	83,000	80
83,001	to	96,000	90
96,001	to	130,000	100
130,001	to	220,000	120
220,001	to	320,000	150
320,001	to	450,000	180
450,001	to	600,000	210
600,001	to	780,000	240
780,001	to	970,000	270
970,001	to	1,230,000	300
1,230,001	to	1,520,000	330
1,520,001	to	1,850,000	360
1,850,001	to	2,270,000	390
2,270,001	to	3,020,000	420
3,020,001	to	3,960,000	450
3,960,001	or more		480

Outside the US

TABLE 23.9 Drinking Water Criteria of the European Union

Tap water	
Escherichia coli	0/100 ml
Fecal streptococci	0/100 ml
Sulfite-reducing clostridia	0/20 ml
Bottled water	
Escherichia coli	0/250 ml
Fecal streptococci	0/250 ml
Sulfite-reducing clostridia	0/50 ml
Pseudomonas aeruginosa	0/250 ml

The water serving Your Location

The water quality monitoring results are presented below.

The water sources serving this address are:

Source Name	Origin of Water	Treatment	Region
a) Beretania Pumping Station	Groundwater	Chlorination	1
 b) Kaimuki Pumping Station 	Groundwater	Chlorination	1

has been tested and meets all Federal and State standards.

Unregulated Contaminants (Do not have designated maximum limits but require monitoring)

	Tested	Sample		Highest	Range		Range		Health	
Contaminant	Ву	Year	Unit	Average	Minimum	Maximum	Advisory	Found in Sources		
1-Butanol	(2)	2018	ppb	6.250	5.600	6.900	NYA	а		
Chlorate	(2)	2017	ppb	72.500	53.000	77.000	210.000	All Sources		
Chloride	(2)	2019	ppm	100.000	93.000	100.000	250 **	All Sources		
Chromium, Hexavalent	(2)	2017	ppb	2.000	2.000	2.000	13.000	All Sources		
Dieldrin	(2)	2019	ppb	0.044	0.044	0.044	0.200	b		
Sodium	(2)	2017	ppm	52.000	37.000	52.000	60.000	All Sources		
Strontium	(2)	2017	ppb	155.000	79.000	180.000	4000.000	All Sources		
Sulfate	(2)	2019	ppm	16.000	10.000	16.000	250 **	All Sources		
Vanadium	(2)	2017	ppb	19.500	12.000	21.000	21.000	All Sources		
** Secondary Maximum Contaminant	Levels (SI	MCLs) are	standards e	stablished as g	uidelines to assi	st public water s	ystems in man	aging the aesthetic quality		
(taste, odor and color) of drinking wate	er. EPA d	oes not en	force SMCL	s.						

Microbial Contaminants (2)

System Name	Contaminant	Number of positive E. coli samples found	Violation (Yes/No)	Number of assessment required to perform		Major sources in drin water	king
Honolulu-Windward-Pearl Harbor	E. Coli		No tatig	0	<u>л</u> .	Human and animal fecal waste	/

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

GAC Health Advisory	or expected fish to nearth, incluss anow for a margin of safety. Granular Activated Carbon Filtration An estimate of acceptable drinking water levels for a chemical substance based on health effects information.	Residual Chlorine							
CFU/100ml mrem/yr pCi/L	Health advisory is not a legally enforceable standard. Colony forming units per 100 milliliter Millirems Per Year (A Measure of Radiation) Picocuries Per Liter (A Measure of Radioactivity)	System Name		Sa Y	ample Year				
ppb ppm ppt	Parts Per Billion or Micrograms Per Liter" Parts Per Million or Milligrams Per Liter Parts Per Trillion or Nanograms Per Liter	Honolulu-Windward-Pearl Harbor		2	2019				
NQ NYA N/A	Not Yet Available Not Yet Available Not Applicable Not Applicable Not Applicable	Lead/Copper Testing (2)							
* (1) (2)	EPA considers 50 pCi/L to be the level of concern for beta particles Analysis by the State of Hawaii Department of Health. Analysis by the Honolulu Board Of Water Supply. Questions, call 808-748-5370.	Contaminant	Sample Year	Unit	90th Percenti Readin	ile g			
MRDL MRDLG	monitoring location during the previous four calendar quarters. Maximum residual disinfectant level: The highest level of a disinfectant allowed in drinking water. Maximum residual disinfectant level goal: The level of a drinking water disinfectant below which there is no known or expected risk to health.	Copper Lead	2018 2018	ppm ppb	0.02	:9)0			
	•	No violations found for calendar year 201	9						

Residual Chiorine							
System Name	Sample Year	Unit	Lowest Monthly Average	Highest Monthly Average	Running Annual Average	MRDL	MRDLG
Honolulu-Windward-Pearl Harbor	2019	ppm	0.29	0.35	0.3	4	4

Action

Level

1.300

15.000

Samples

Above Action

Level

0

0

lo violations found for calendar year 2019

Growth of indicator bacteria (total coliforms, *E. coli*, and enterococci) in Hawaiian soils

- Known for 25+ years
- High concentrations measured by many scientist:

Hardina & Fujioka, 1991

Luther & Fujioka, 2004

Byappanahalli et al., 2011

Goto & Yan, 2011

Kirs et al, 2017

It is not a theory or hypothesis

44Enterococcus multiplies in the soil, and then when it rains it washes into streams and down into coastal waters.

Growth of indicator bacteria in Hawaiian soils - consequences

• All current indicator bacteria can grow in Hawaii soils

• Transported by rain

• Impacts water quality

What do high indicator bacteria truly mean?

Soil samples around 34 groundwater wells on Oahu (fenced, no public access)

- All soil samples were positive for total coliforms and enterococci.
- Geometric mean concentrations of both organisms were 1403 MPN/g and 49 MPN/g respectively, but frequently exceeded >2,419.6 MPN/g of soil.
- *E. coli* was detected in 55% of samples and the concentrations varied from <1 to >2,419.6 MPN/g.

Indicator bacteria in soils at Lyon arboretum

Adam Cannon (REU student)

Organism	Units	Native 1	Native 2	Non-native 1	Non-native 2
Enterococci	MPN/gram	92	164.2	61.4	250.6
	(min,max)	(<10,241)	(<10,670)	(20,141)	(10,613)
Total coliforms	MPN/gram	14562	111140	29987.5	37592.5
	(min,max)	(6440,21640)	(14450,>241960)	(4060,>241960)	(6700 <i>,</i> 86640)
E. coli	MPN/gram	5	25.2	7	442.3
	(min,max)	(<10,<10)	(<10,169)	(<10,10)	(51,1259)
C. perfringens	CFU/gram	250	120	100	560
	(min,max)	(0,1000)	(0,500)	(0,200)	(0,1100)
Somatic coliphage	PFU/gram	0	0	0	0
	(min,max)	(0,0)	(0,0)	(0,0)	(0,0)
F+ coliphage	PFU/gram	4	8	0	1.67
	(min,max)	(0,20)	(0,40)	(0,0)	(0,10)
Pathogenic <i>Leptospira spp</i> .	Positive samples/All samples	0/5	0/6	1/5	1/6
Human-associated Bacteroides	Positive samples/All samples	0/5	0/6	0/5	0/6

Microbial Source Tracking (MST):

Set of tools to identify the source of fecal contamination in ground and surface waters

Importance:

- Health risk
- Management
- Mediating Conflicts

Key component in QMRA studies

Plan

Lecture 1

- Crash course: microbiology
- Groundwater microbiology

Lecture 2

- Pathogens and groundwater quality
- Drinking water treatment

- Water sources: groundwater, surface water, rainwater....wastewater
- Slow sand filters were the earliest methods used
- In 1881, Koch showed that chlorine can be used as disinfectant
- First continuous chlorination of public water supply for the first time 1905 (London), regular use in US 1908 (Chicago)

FIGURE 25.1 Impact of water filtration and chlorination on typhoid fever death rate in Albany, New York. From Logsdon and Lippy, 1982.

Gerba & Pepper, 2015

• Treatment process trains (options):

Gerba & Pepper in Mayer, et al, 2009

1. Chlorination (chlorine or chlorine dioxide) or Ozone ((or bromine, iodine, UV))

- Strong oxidizers
- Chlorine when added as gas forms hypochlorous acid (HOCl) and hydrochloric acid (HCl)
- To prevent regrowth, treatment with ozone is typically followed by chlorination as ozone leaves no residue.
- Ozone treatment is more expensive than chlorination, can produce suspected carcinogens

- 2. Sedimentation
- Coagulant is added to enhance removal of dissolved suspended solids during the sedimentation and filtration
- Flocculation (stirring) enhances coagulation
- Frequently used coagulants are alum, ferric sulfate and ferric chloride or polyelectrolytes
- Gravitational settling
- **3.Filtration**
- Rapid sand and/or anthracite filters (50-75 cm) (mostly US), backwashed on regular basis
- Slow sand filtration (60-120 cm and gravel 30-50 cm)) (mostly Europe), biofilm formation important
- Filtration especially important for removal of *Giardia* and *Cryptosporidium*

TABLE 25.2 Coagulation, Sedimentation, Filtration: Typical Removal Efficiencies and Effluent Quality

Organisms	Coagulation and sedimentation (% removal)	Rapid filtration (% removal)	Slow sand filtration (% removal)
Total coliforms	74–97	50–98	>99.999
Fecal coliforms	76–83	50–98	>99.999
Enteric viruses	88–95	10-99	>99.999
Giardia	58–99	97–99.9	>99
Cryptosporidium	90	99–99.9	99
From U.S. EPA, 1988.			Gerba in Mayer, et al, 2009

Drinking Water Treatment – Other options

Riverbank filtration

Ryan, et al., 2002

Solar pasteurization

Ray and Jain, 2011

CEDESOL Foundation

The absorber plate must be supported above the box bottom to prevent heat loss.

Solarcooking.org

	Temperature	Results
Sunlight heats the container and solar absorber plate. The absorber plate moves the heat to the water or food.	55°C(131°F)	Worms, protozoa cysts D =~ 1min
	60°C(140°F)	<i>E. coli,</i> rotavirus <i>, Salmonella typhi, Vibrio cholera, Shigella</i> D value ~1min
orted heat loss.	65°C(149°F)	Hepatitis A virus D value =~1min
org		

D - value - 90% of contaminant removal

Drinking Water Treatment – Other options

Drinking Water Treatment – Other options

Distillation ... earliest probably 1200BC in Mesopotamia

Solar distillation

Several barriers to protect end-user

- Source water protection
- Water plant process and disinfection
- Distribution system residual disinfection
- Security

Water Distribution Systems and Biofilms

- Dissolved organic compounds can cause problems taste, odor, enhanced chlorine demand, and bacterial colonization (biofilms)
- Biofilms can have aerobic and anaerobic zones
- Biofilms controlled by temperature, water hardness, pH, redox potential, dissolved carbon and residual disinfectant.
- Microorganisms more resistant to disinfectants in biofilms
- Heterotrophic plate count can be used to indicate deteriorating water quality in the distribution system
- Water-based pathogens such as *Legionella* can form biofilms

Typical water that leave treatment plant HPC: 10 CFU/ml Average household tap has HPC: ~3,000 HPC /ml (Pepper et al., 2004)

- Health risk from a wide array of microbial pathogens may exist if drinking water is sourced and used untreated from the GWUDI wells.
- Indicator bacteria concept and its shortcomings
- Drinking water treatment options
- Biofilms in the distribution systems