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Abstract

We investigate the connection between equilibrium existence and its attainability

through simple market mechanisms in exchange economies with indivisibilities and

complementarities. The analysis suggests that attaining efficient outcomes through

simple non-combinatorial auctions may be problematic even when market clearing

prices exist.
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1 Introduction

We study the problem of allocating two heterogeneous objects among a number of agents

in an environment where there exist positive complementarities in agent valuations be-

tween objects. There are two issues of interest. The first is the existence of competitive

equilibrium. The second is whether the competitive equilibrium can be obtained as an

outcome of a simple market mechanism.

It is well-known that competitive equilibrium may not exist in an environment with

indivisible objects. Bikhchandani and Mamer (1997) present necessary and sufficient con-

ditions for existence of equilibrium in economies with indivisibilities using linear program-

ming techniques. Kelso and Crawford (1982) and further Gul and Stachetti (1999) show

that the competitive equilibrium exists in environments with indivisibilities if the gross

substitute condition is satisfied, that is, if there is a certain substitutability in agent val-

uations across objects. In the presence of complementarities, examples of non-existence

of equilibrium are easily generated (e.g., Bykowsky et al., 2000). It is then of interest to

investigate whether competitive equilibrium exists in some special classes of environments

with complementarities.

The literature also shows that in environments where the gross substitute condition

on agent preferences is satisfied, competitive equilibrium can be obtained as an outcome

of an English-type auction (Demange, Gale and Sotomayor, 1986; Gul and Stachetti,

2000; Ausubel, 2000). This suggests that there may be a connection between equilibrium

existence and its attainability though simple auction mechanisms. This connection has

not been investigated in other types of environments. As stated by Bikhchandani and

Mamer (1997, p. 405), the question is: “Do there exist simple market mechanisms (i.e.,

mechanisms that assign a price to each object) which efficiently allocate multiple indivisible

objects when market clearing prices exist?”

Our anlysis suggests that, in the presence of complementarities, existence of competi-

tive equilibrium does not necessarily imply that an equilibrium outcome may be obtained

through a simple auction. We present a class of two-good environments with common

additive complementarity, for which the competitive equilibrium exists. However, an ex-

ample suggests that simple dynamic mechanisms are unlikely to guarantee convergence to

competitive equilibrium outcomes in these environments.1

1Bykowsky et al. (2000) point out that using simultaneous English auctions in environments with
complementarities may lead to “mutually destructive bidding.” However, the problem they discuss may
be caused by the feature of the auction that requires bidders to commit themselves to buying individual
objects even when desired packages do not materialize. This feature is absent in the auction we consider.
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2 Competitive equilibria with common complementarities

The setting is as follows. There are two objects, A and B, and a set N of n agents

(bidders), n < ∞. Let ai be bidder i’s value for object A, and bi be bidder i’s value for

object B, with ai, bi ∈ [0, v̄]. Then i’s value for the package AB is given by

ui(AB) = ai + bi + k,

where k is the common additive complementarity term, k ≥ 0.2 Let W be the set of

possible packages that can be sold to a bidder, W ≡ {∅, A, B, AB}, and let w be an

element of W . We assume that bidders have quasi-linear utilities in packages and money,

and are not budget constrained. Bidder i’s utility of buying a package w given prices

p = (pa, pb) is i’s net value of the package, or his surplus: Si(w; p) = ui(w) − ∑
j∈w pj ,

where j is the object index, j ∈ {a, b}. Specifically,

Si(∅; p) = 0 (1)

Si(A; p) = ai − pa (2)

Si(B; p) = bi − pb (3)

Si(AB; p) = ai + bi + k − pa − pb (4)

For any price vector (pa, pb), let i’s demand set be the set of packages that maximize i’s

surplus at this price:

Di(p) = {w ∈ W |Si(w; p) = maxv∈W Si(v; p)}. (5)

We employ standard Walrasian notion of competitive equilibrium (CE). A price p =

(pa, pb) is a competitive equilibrium price if, given p, there is an allocation of objects to

bidders µ : {A, B} → N such that each bidder gets a package in their demand set, i.e.,

there is no excess demand. Such price and allocation pair (p, µ) is called a competitive

equilibrium if, in addition, the prices of all unallocated objects are zero.

An allocation is efficient if the total value of allocation is maximized. In the presence

of complementarity, equilibrium and efficiency conditions will differ depending on whether

the objects are allocated to the same or to different bidders. We will say that “packaging”

is efficient if it is efficient to allocate both items to the same bidder i ∈ N . “Splitting” is

efficient if it is efficient to allocate the items to two different bidders.
2The framework is similar to Brusco and Lopomo (2002), who consider two-object environments with

either no complementarities or large additive complementarities in their study of bidder collusion in multi-
unit ascending price auctions. Assuming that the object values are drawn independently across bidders from
the same probability distribution, and the objects are allocated using a simultaneous ascending bid auction,
Brusco and Lopomo show that with either no complementarity or with large complementarities there exists
a “competitive” Perfect Bayesian Equilibrium of this auction that leads to an efficient allocation. The case
of moderate complementarities is not considered.
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In this framework, we establish the following.

Proposition 1 For any finite number of bidders, n < ∞, and any common comple-

mentarity term, k ≥ 0, the set of CE prices and allocations is non-empty, and any CE

allocation is efficient.3 The set of CE prices is characterized as follows:

• Suppose that allocating both items to one bidder, or packaging, is efficient:

ai + bi + k ≥ max{max
j∈N

aj + max
j∈N

bj , max
j �=i

(aj + bj) + k} (6)

for some i ∈ N . Then the set of CE prices is given by (pa, pb) such that

max
j �=i

(aj + bj) + k ≤ pa + pb ≤ ai + bi + k; (7)

max
j �=i

aj ≤ pa ≤ ai + k; (8)

max
j �=i

bj ≤ pb ≤ bi + k. (9)

• Suppose that splitting of items between bidders is efficient:

ai + bj ≥ max{max
l∈N

al + max
l∈N

bl, max
l∈N

(al + bl) + k}, (10)

for some i, j ∈ N , i �= j. Then the set of CE prices is given by (pa, pb) such that

max
l �=i�=j

(al + bl) + k ≤ pa + pb; (11)

max{aj + k, max
l �=i�=j

al} ≤ pa ≤ ai; (12)

max{bi + k, max
l �=i�=j

bl} ≤ pb ≤ bj . (13)

The proof is straightforward and is given in the appendix.

3 Failure of Simple Auctions

We now consider whether competitive equilibrium outcomes may be achieved by honest

(non-strategic) bidders under a simple English-type auction. We will consider a variant

of the progressive auction mechanism of Demange, Gale and Sotomayor, that has been

shown to lead to competitive equilibrium outcomes when goods are substitutes (Demange,

Gale and Sotomayor, 1986; Gul and Stachetti, 2000). Assume that all values are discrete;

specifically, all prices are integers, and all bidder valuations are even integers. The auction

starts with an initial price vector (p0
a, p

0
b) = (0, 0) announced by the auctioneer. Each

3Bikhchandani and Mamer (1997) show that if market clearing prices exist in an exchange economy with
indivisibilities, then the corresponding allocations must be efficient. We re-establish equilibrium efficiency
here for the sake of completeness.
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bidder announces which packages w ∈ W are in their demand set at this price. It is

required that all bidders report all packages in their demand sets. If it is possible to assign

items {A, B} to bidders so that each bidder gets a package in their demand set, then

the prices must be at a CE, and the auction stops. If no such assignment exists, then

the auctioneer raises prices by one unit on items in {A, B} which are overdemanded. An

item is overdemanded at price p if it is necessary to increase the supply of this item (and,

possibly, some other items) to find an assignment so that each bidder gets a package in

their demand set. Let O(p) denote the set of overdemanded items at price p. After the

prices are raised, the bidders report their new demand sets, and the procedure continues

until a price vector is reached at which no excess demand exists.

We focus on this particular auction mechanism because it appears the most promising

within the family of simple non-combinatorial auctions. Honest bidding under this mech-

anism can never lead to bidder losses. Analogous mechanisms guarantee convergence to

competitive equilibrium in environments with substitutes. Further, with common comple-

mentarities, in the special cases of either two bidders and an arbitrary complementarity

term, or any number of bidders and a large complementarity term, k > v̄, this auction

does lead to an efficient allocation at minimal competitive equilibrium prices (Sherstyuk,

2002).

Unfortunately, the following example demonstrates that with more than two bidders,

the mechanism may result in inefficient allocations and prices out of equilibrium range.

Example 1 Let there be three bidders, n = 3, and let a1 = b1 = 20, a2 = 36, b2 = 0,

a3 = b3 = 16, and k = 20. Hence it is efficient to allocate both items to bidder 1; from 7-9,

the set of CE prices is given by:

56 ≤ pa + pb ≤ 60 (14)

36 ≤ pa ≤ 40 (15)

16 ≤ pb ≤ 40 (16)

Consider the bidding dynamics as illustrated in table 1. All three bidders will initially

demand package AB only, and therefore the prices will rise on both items simultaneously.

At pa = pb = 20, bidder 2 switches his demand from AB to A: S2(AB; p) = S2(A; p) = 16.

However, bidders 1 and 3 keep demanding AB only, and hence the prices rise on both

items until they reach pa = pb = 26. At this point bidder 3 reports ∅ ∈ D3(p), given

S3(AB; p) = S3(∅; p) = 0, and the price of B stops rising. Now bidder 1 demands AB,

and bidder 2 demands A, hence the price of A keeps rising until the prices reach the

level of pa = 34, pb = 26. At this point S1(AB; p) = S1(∅; p) = 0, and bidder 1 reports

∅ ∈ D1(p); bidder 2 still demands A, with S2(A; p) = 2. Hence the auction stops with item
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A allocated to bidder 2, and item B not allocated; the resulting prices, (pa, pb) = (34, 26),

are out of the equilibrium range: pa < 36.

TABLE 1 AROUND HERE

This example suggests that in environments with complementarities, attaining efficient

outcomes through simple auction mechanisms may be problematic even when market

clearing prices exist. Hence in situations where achieving an efficient equilibrium outcome

is critical, mechanism designers should turn to more complex combinatorial auctions that

would allow for package bidding.

Appendix: Proof of Proposition 1

Before turning to the proof, it is useful to write out explicitly conditions under which

a package w ∈ W is demanded by a bidder i ∈ N . Let p = (pa, pb) be a price vector.

Applying definitions 1-4 and 5, we obtain:

• AB ∈ Di(p) if and only if:

ai + bi + k ≥ pa + pb (17)

bi + k ≥ pb (18)

ai + k ≥ pa. (19)

• A ∈ Di(p) if and only if:

ai ≥ pa (20)

bi + k ≤ pb. (21)

• B ∈ Di(p) if and only if:

bi ≥ pb (22)

ai + k ≤ pa. (23)

• ∅ ∈ Di(p) if and only if:

ai + bi + k ≤ pa + pb (24)

ai ≤ pa (25)

bi ≤ pb. (26)

The following efficiency conditions will be also useful:
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• Efficiency condition 6 holds, i.e., it is efficient to allocate the package AB to bidder

i ∈ N , if and only if:

ai + bi ≥ aj + bj for all j ∈ N (27)

ai + bi + k ≥ aj + bl for all j, l �= i (28)

bi + k ≥ bj for all j �= i (29)

ai + k ≥ aj for all j �= i. (30)

• Efficiency condition 10 holds, i.e., it is efficient to allocate item A to bidder i ∈ N ,

and item B to bidder j ∈ N , i �= j, if and only if:

ai ≥ al for all l ∈ N (31)

bj ≥ bl for all l ∈ N (32)

bj ≥ bi + k (33)

ai ≥ aj + k. (34)

ai + bj ≥ max
l �=i�=j

(al + bl) + k. (35)

Proof of proposition 1 The sets of CE prices are derived by solving for the no excess

demand equilibrium conditions. Let (µ, p) be a CE price and allocation pair. Suppose

under allocation µ each bidder i ∈ N is assigned a package wi ∈ W , so that ∪iwi = {A, B},

wi ∩ wj = ∅ for all i, j ∈ N , i �= j. The no excess demand conditions are:

Si(wi; p) ≥ Si(v; p) for any v ∈ W. (36)

There may be only two types of equilibrium allocations: either both items in {A, B}
are given to one of the bidders, or the items are split between the bidders. Consider

equilibrium conditions for each of the two cases in turn.

Case 1: Suppose that, in equilibrium, the package AB is assigned to bidder i ∈ N .

The no excess demand conditions are conditions 17-19 for bidder i, and conditions 24-26

for all other bidders j �= i. Combining the inequalities, we obtain the characterization of

the set of CE prices as given in 7-9. Note that a price vector satisfying the ineqalities 7-9

exists if and only if conditions 27-30 hold: Obviously, if conditions 27-30 are satisfied, we

can find prices (pa, pb) that satisfy 7-9. Conversely, suppose there exists a price vector

(pa, pb) satisfying 7-9. Then 7 implies 27, 8 implies 30, 9 implies 29; finally, adding 8 and

9, we obtain maxj �=i aj + maxl �=i bl ≤ pa + pb, which, together with 7, implies 28. Hence

we obtain that a set of CE prices supporting the allocation of the package AB to bidder

i is non-empty if and only if such allocation is efficient.
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Case 2: Now suppose that, in equilibrium, item A is assigned to bidder i, and item

B is assigned to bidder j, for some i, j ∈ N , j �= i. Hence A ∈ Di(p), B ∈ Dj(p), and

∅ ∈ Dl(p) for all l �= i �= j; that is, inequalities 20-21 hold for i, inequalities 22-23 hold for

j, and inequalities 24-26 hold for all other bidders l �= i �= j. Combining these inequalities,

we obtain the characterization of the set of equilibrium prices as given by 11-13. As in the

previous case, it is straightforward to show that a price vector satisfying ineqalities 11-13

exists if and only if efficiency conditions 31-35 hold. �
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pa pb max S1(p) D1(p) max S2(p) D2(p) max S3(p) D3(p) O(p)
0 0 60 AB 56 AB 52 AB A,B

...
20 20 20 AB 16 A,AB 12 AB A,B
21 21 18 AB 15 A 10 AB A,B
...
26 26 8 AB 10 A 0 AB,∅ A
27 26 7 AB 9 A 0 ∅ A
...
34 26 0 AB,∅ 2 A 0 ∅ ∅

Table 1: An example of failure of a simple progressive auction to reach a competitive
equilibrium outcome.
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