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Nearshore Bathymetry Estimation

FRF site in DUCK, NC, USA

Immediate understanding of bathymetry is crucial for coastal applications.

Several survey methods such as direct sampling and airborne Lidar are not
always applicable.

Instead, easily measurable related quantities (e.g., imagery-based wave
celerity) have been collected.

Then, physics-based model (e.g. STWAVE) can be used to relate indirect
observations to bathymetry through inverse modeling/data assimliation.
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Nearshore Bathymetry Estimation - Imagery Data Acqusition

Imagery data has been collected mostly from fixed tower-based platforms:

Recently, Unmanned Aircraft Systems (UAS) has been introduced (e.g.,
Holman et al., 2011):
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UAS Survey on July 22, 2016 in Duck, NC1

UAS-derived imagery on a single flight along shoreline in the black box.

CBathy and Structure-from-Motion (SfM) algorithms provide high-
resolution wave celerity (blue dots) and beach topographic data (red dots).

1Brodie et al., 2019
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Rapid Model-based Nearshore Bathymetry Inversion Framework

We propose a flexible and fast bathymetry estimation framework utilizing
1 low-cost commercial off-the-shelf UAS-based data acqusition
2 phase-averaging wave model: USACE’s STWAVE
3 real-time batch-data inverse modeling approach, PCGA1

Principal Component Geostatistical Approach, PCGA, performs scalable
Hierarchical Bayesian inversion by approximating the covariance matrix with its
dominant principal components

Modular (can be linked with any black-box nearshore models.)
Jacobian-free
Embarrasingly parallelizable
Scalable: O(100) model runs in total for > 107 unknowns/obs. through
fast linear algebra/dimension reduction without much loss of accuracy.
Insenstive to initial guess
Flexible prior assignment: prior mean structure can be derived from
parameteric models such as linear or Dean’s profiles.

1Lee and Kitanidis, 2014, Lee et al, 2016, Lee et al., 2018
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Public-domain Software for Reproducible Research

pyPCGA: Python interface for fast and scalable stochastic inversion1

google pyPCGA!

Users can perform close-to-real-time bathymetry inversion on Jupyter notebook
environment in two lines of code (after preprocessing steps, of course)

Several notebook examples combined with USACE’s STWAVE and AdH
1https://github.com/jonghyunharrylee/pypcga
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Results with Joint Inversion using Wave and Inland Data

Compare the estimation result with direct bathymetry profiles surveyed
near the UAS flight date.

RMSE = 0.28 m within observation area (300 x 400 m)

Converged in 3 iterations with ∼150 STWAVE runs.

5 mins on a workstation equipped with 48 core Intel Xeon 8160 2.1 GHz.
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Data Fitting

Optimal measurement errors are determined through cross-validation
/Bayesian hyperparameter estimation.

Wave celerity (via STWAVE-based inversion) and inland elevation (via
Kriging interpolation) data were fitted well.
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Estimated Bathymetry Profile along a Transect

Inversion results were not sensitive to initial guess assignments

Direct surveyed profile is located within 95% credible interval.
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Effect of Inland Elevation Data
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Estimated Bathymetry Profiles with and without Inland Data
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Concluding Remarks

With low-cost, multi-camera, multirotor UAS system, we expect
close-to-real-time bathymetry imaging will be feasible in the near future.
Our inversion method took only around 5 minutes on a modern
workstation, within the UAS-based data collection duration.
Estimated bathymetry profiles are remarkably close to the direct survey
data (RMSE = 0.28 m) within the estimation credible interval due to the
additional use of inland elevation data.
We provide inversion software package for scientists and engineers.
Future works:

will test with data sets with more severe weather conditions.
will implement with advanced wave models such as WaveWatch III and
FunWAVE.
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Bathymetry Research Products from Our Group

AGU Fall Meeting 2019

1 EP43C-04 Thurs. 14:25 - 14:40 Moscone West - 3024, L3
Yizhou Qian: Applications of deep neural network to nearshore bathymetry
with sparse measurements.

2 EP53C-07 Fri. 13:40 - 15:40 Moscone South - eLightning Theater I
Mojtaba Forghani: Deep learning techniques for riverine bathymetry and
flow velocity estimation bathymetry.

Recent papers about bathymetry

1 Ghorbanidehno et al., Novel data assimilation for nearshore bathymetry,
Journal of Atmospheric and Oceanic Technology, 2019

2 Lee et al., Riverine bathymetry imaging with indirect observations, Water
Resources Research, 2018

Jonghyun Harry Lee Bathymetry Inversion 13 / 14



References

Brodie, Bruder, Slocum, and Spore, Simultaneous Mapping of Coastal
Topography and Bathymetry From a Lightweight Multicamera UAS, IEEE
Transactions on Geoscience and Remote Sensing, 2019

Ghorbanidehno, Lee, Farthing, Hesser, Kitanidis, and Darve, Efficient data
assimilation algorithm for bathymetry application, Journal of Atmospheric
and Oceanic Technology, 2019

Lee, Ghorbanidehno, Farthing, Hesser, Darve, and Kitanidis, Riverine
Bathymetry Imaging with Indirect Observations, Water Resources
Research, 2018

Lee, Yoon, Kitanidis, Werth, and Valocchi, Scalable subsurface inverse
modeling of huge data sets with an application to tracer concentration
breakthrough data from magnetic resonance imaging, Water Resources
Research, 52(7), 5213-5231, 2016

Lee and Kitanidis, Large-scale hydraulic tomography and joint inversion of
head and tracer data using the principal component geostatistical
approach (PCGA), Water Resources Research, 50(7), 2014

Holman, Holland, Lalejini, and Spansel, Surf zone characterization from
unmanned aerial vehicle imagery, Ocean Dynamics, 2011

Jonghyun Harry Lee Bathymetry Inversion 14 / 14



Jonghyun Harry Lee Bathymetry Inversion 14 / 14



Inverse Problem in Hierarchcial Bayesian Framework

Consider the measurement equation

yt = h(st) + vt vt ∼ N (0,Rt)

yt := nobs × 1 noisy measurements
h := forward model
st := nunknowns × 1 bathymetry
vt := measurement and model error

Need to account for the uncertainty in model and data

Treat parameters as random variables

Hierarchical Bayesian1 Geostatistical Approach2

1Gelman, Calin, and Stern, 2013; Kitanidis, 2010
2Kitanidis, 1995
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Geostatistical Approach

The posterior estimate ŝ and covariance Γpost:

arg min
s,β

1

2
‖y − h(s)‖2

Γ−1
noise

+
1

2
‖s − Xβ‖2

Γ−1
prior

Algorithm Bayesian geostatistical approach

1: while Not converged do
2: Solve the system of equations ,(

JkΓpriorJ
T
k + Γnoise JkX

(JkX )T 0

)(
ξk+1

βk+1

)
=

(
y − h(sk) + Jksk

0

)
where, the Jacobian J = ∂h

∂s

∣∣
s=sk

3: The update sk+1 = Xβk+1 + ΓpriorJ
T
k ξk+1

4: end while

5: Γpost = Γprior −
(

ΓpriorJ
T X

)( JkΓpriorJ
T
k + Γnoise JkX

(JkX )T 0

)(
JΓprior

X

)
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Principal Component Geostatistical Approach (PCGA)1

Method Adjoint-based method PCGA
# of simulation runs nobs + 1 κ+ 1
matrix multiplication O(nobsnunknowns) O(nunknownsκ)

storage O(nobsnunknowns) O(nobsκ)

κ+ 1 simulation runs in each iteration

κ ∼ O(100) or less for many problems in earth science

Can handle large measurements (e.g, 107 measurements)

Easy to implement; treat multi-physics models as a “blackbox” like
Ensemble-based methods

Parallel executions

1Lee and Kitanidis, 2014
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Computational Challenges

1. Computing and storing Covariance matrices are expensive!

ΓpriorJ
>, JΓpriorJ

>

nunknowns + 1 number of forward model executions in each iteration

O(n2
unknowns) storage

2. Computing and storing the Jacobian and its products are expensive (e.g.,
nobs � 106).

nobservation + 1 number of forward model executions in each iteration
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Dimension Reduction in PCGA

Summary : we employed

1 O(n) fast linear algebra (e.g., H-matrices and FMM) for decomposition of
the prior covariance matrix

2 Generalized Eigenvalue Decomposition to construct exact preconditioner of
saddle-point matrix
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