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Overview

Bathymetry, i.e, depth imaging in a river, is of crucial importance for shipping op-
erations and flood management. With advancements in sensor technology and com-
putational resources, various types of indirect measurements can be used to estimate
high-resolution riverbed topography. Especially, surface velocity measurements have
been the object study because they are easy to acquire at a low cost in all river
conditions and surface velocities are sensitive to river depth.
We image riverbed topography using depth-averaged quasi-steady velocity observa-
tions related to the topography through the 2D shallow water equations (SWE). The
principle component geostatistical approach (PCGA), a fast and scalable variational
inverse modeling method powered by low-rank representation of covariance matrix
structure, is presented and applied to two “twin” riverine bathymetry identification
problems. For comparison purposes, an ensemble-based approach is also applied to
the test problems.

Principal Component Geostatistical Approach

With m unknowns, nobs measurements, and forward model(s) h, one needs:

•Jacobian matrix H, i.e., sensitivity of the data to unknown parameters ∂h
∂s

•Jacobian products with the prior covariance matrix Q, i.e., HQ and HQHT

For large-scale/joint inversions (large m and nobs), one faces several challenges such as

• time-consuming, invasive changes in multi-physics simulation code for efficient
adjoint-state method implementation to evaluate Jacobian H

• expensive Jacobian construction requiring nobs (≥ O(104)) simulations
•prohibitive large dense matrix multiplication/storage for large m (≥ O(106))

In order to tackle these challenges, we developed PCGA that avoids expensive Jaco-
bian evaluation and its matrix products (cross-covariance) by using a fast truncated
decomposition [2,3] of the prior covariance

Q ≈ Qκ = Σκ
i=1ζiζ

T
i

and finite-difference approximation:

Hζi ≈
1
δ

[h (s + δζi) − h(s)] , HQ ≈ Σκ
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scales linearly
⇐

(Cost O(mκ2))

total κ + 1
⇐

simulations!

Thus, PCGA can achieve a significant speed-up with reasonable accuracy,
using simulation outputs without modifying multi-physics simulation code.

Case 1: Savannah River, GA

Figure: 1 mile reach of the Savannah River near Augusta, GA (left), and high-resolution bathymetry survey
by U.S. Army Corps of Engineers (USACE) (right)

•The length of the domain is ∼ 1.2 km and across-channel distance is 98.4 m in avg.

•The river dynamics are simulated using the 2D shallow water module of the USACE’s
ADaptive Hydraulics (ADH) model [4].

•20,541 unknown river elevation estimated from drift-measured velocity

•Forward simulations and inversions were executed on a 36 core workstation.

Results & Comparison with Ensemble-based method

Figure: Estimate from PCGA (left), from ENS with a rectangular channel prior (middle), and from ENS
with a parabolic channel prior (right)

Since eigenvectors of prior covariance matrix are the basis for the solution space of in-
verse problem [1] and eigenvalues indicate their importance, we investigate eigenvalues
and eigenvectors used in PCGA and Ensemble-based approach

Figure: Eigenvectors of prior covariance matrix (top), a sample covariance matrix with 100 ensemble
(middle), a sample covariance matrix with 500 ensemble (bottom)

Figure: RMSE values between the true and projected riverine bathymetry of the Savannah River onto the
eigenspace of the prior covariance vs. the number of rank used in PCGA (nPC) and the ensemble-based
method (nENS) (left), eigenvalue distribution of the actual covariance matrix (red), and the ensemble
covariance matrices (right)

Case 2: American River, CA

•10 km reach of the American River, CA
•102,051 elevation point estimation using 16,978 velocity measurements
•Only ∼ 400 ADH simulation runs required
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Figure: Bathymetry survey of American River, best estimate and estimation uncertainty (left) and
Bathymetry estimates along the centerline (middle) and thalweg (right) with different level of observation
error

Conclusion

• PCGA identifies small-scale river bottom features successfully with a
relatively small number of the numerical model runs.

• Compared to an Ensemble-based approach (EnKF), PCGA is superior
in accuracy for the same level of effort.

• The results obtained from PCGA do not depend on the initial guess.

Ongoing Works

•River bathymetry imaging at a tidal inlet near Puget Sound
•Software release - pyPCGA
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