Fast large-scale joint inversion for deep aquifer characterization
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» Forward model runs independent of the problem size : simulated pressure [m] simulated total heat [TC]
often runs much smaller number of simulations in practice Figure: Data fitting for joint inversion; (a) observed vs. simulated pressure and (b) observed vs. simulated
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» Linear scalability : Matrix computation and storage costs grow linearly with
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Figure: Synthetic true field generated by TProgS; pumping (red) and monitoring (blue) wells Number of measurements 4 000 (P only), 4 040 (P + 0-th moment of T)
Principal Component (Geostatistical Approach Measurement error (std) 0.5 [m], 2.0 [°C]
TOUGH2-MP with module EOS1 was used for four dipole pumping tests between the Total number of TOUGH2 runs 1,353 (P only), 1,780 (P + T)
L , , L I of 8 multilevel monitoring wells with 10 monitoring ports. Transient pressure and zero-th
» Jacobian matrix H, 7.e., sensitivity of the data to unknown parameters 5 . y ) . .
o | | | - | . moment of temperature (“total heat”) data was used for the inversion performed on a pyPCGA 4+ pyTOUGH
 Jacobian products with the prior covariance matrix Q, i.e., HQ and HQH Linux workstation with Intel 16 core 3.4 GHz processors and 100 GB RAM.
For large-scale/joint inversions (large m and ngps), one faces several challenges such as Results with pressure data inversion | / S | | |
| S | S | | o Coming soon! a Python library for automating TOUGH2 simulations and parameter
- t1@ejconsum1ng, Invasive changes in multl—p‘ﬂysms 81mul.at10n code for eflicient estimation for subsurface fluid and heat flow modeling: pyPCGA linked with
adJOIHt_State method 1m_plementat10n to evaluate Jacobian H log. ,(permeability [m?]) using pressure only std(log, k) using pressure only pymOUG as a seemless Computing environment.
- expensive Jacobian construction requiring neps (> O(10%)) simulations

- prohibitive large dense matrix multiplication /storage for large m (> O(10°)) Conclusion
In order to tackle these challenges, we developed PCGA that avoids expensive Jaco- %
bian evaluation and its matrix products (cross-covariance) by using a fast truncated 0 o PCGA scales well with the number of observations to high-dimensional inverse

decomposition [2,3] of the prior covariance problems with controlled accuracy (~ total O(100) per pumping test).
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e oSmall-scale variability and low permeability inclusions are better identified with the
addition of heat tracer test data.

and finite-difference approximation: oo T T e T | | | | | | | e Computational efficiency of pyPCGA enables assessing the information content of

b

1 total £ + complex monitoring datasets for large scale subsurface characterization.
H(, = g [h (S + (5{2) — h(s)] - HQ = Zle (HCZ) C@T <~ simulations! Figure: the best estimate (left) and its estimation uncertainty (right) for pressure data inversion
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o pyPCGA: Python package for Principal Component Geostatistical -
Approach
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Figure: the best estimate (left) and its estimation uncertainty (right) for joint data inversion
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