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Overview
With recent advances in sensor and computation technology, unprecedented large vol-
umes of hydro-geophysical and geochemical data sets can be obtained and processed to
achieve high-resolution images of subsurface properties for more accurate and reliable
subsurface flow and reactive transport prediction. For such problems, the Principal
Component Geostatistical Approach (PCGA) [1,2,3] has been proposed
as:

•Jacobian-free : no need to compute/store full Jacobian
•Forward model runs independent of the problem size :
often runs much smaller number of simulations in practice

•Linear scalability : Matrix computation and storage costs grow linearly with
respect the problem size

•Easy to implement : linked with any “black-box” multi-physics simulation
models without invasive changes

Principal Component Geostatistical Approach

With m unknowns, nobs measurements, and forward model(s) h, one needs:
•Jacobian matrix H, i.e., sensitivity of the data to unknown parameters ∂h

∂s
•Jacobian products with the prior covariance matrix Q, i.e., HQ and HQHT

For large-scale/joint inversions (large m and nobs), one faces several challenges such as
• time-consuming, invasive changes in multi-physics simulation code for efficient
adjoint-state method implementation to evaluate Jacobian H

• expensive Jacobian construction requiring nobs (≥ O(104)) simulations
•prohibitive large dense matrix multiplication/storage for large m (≥ O(106))

In order to tackle these challenges, we developed PCGA that avoids expensive Jaco-
bian evaluation and its matrix products (cross-covariance) by using a fast truncated
decomposition [2,3] of the prior covariance

Q ≈ Qκ = Σκ
i=1ζiζ

T
i

and finite-difference approximation:

Hζi ≈
1
δ

[h (s + δζi)− h(s)] , HQ ≈ Σκ
i=1 (Hζi) ζT

i

scales linearly⇐ (Cost O(mκ2))

total κ + 1
⇐ simulations!

Thus, PCGA can achieve a significant speed-up with reasonable accuracy,
using simulation outputs without modifying multi-physics simulation code.

Python Software - pyPCGA

• pyPCGA: Python package for Principal Component Geostatistical
Approach
• Supports O(N) fast linear algebra and (randomized)
eigen-decomposition
• https://github.com/jonghyunharrylee/pyPCGA

Synthetic Example : Frio site
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Figure: Synthetic true field generated by TProgS; pumping (red) and monitoring (blue) wells

TOUGH2-MP with module EOS1 was used for four dipole pumping tests between the
center injection well and the other four wells. The monitoring network consists of a total
of 8 multilevel monitoring wells with 10 monitoring ports. Transient pressure and zero-th
moment of temperature (“total heat”) data was used for the inversion performed on a
Linux workstation with Intel 16 core 3.4 GHz processors and 100 GB RAM.

Results with pressure data inversion
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Figure: the best estimate (left) and its estimation uncertainty (right) for pressure data inversion

Results with joint pressure and heat data inversion
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Figure: the best estimate (left) and its estimation uncertainty (right) for joint data inversion
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(b) The zero-th moment of temp. BTCs 
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Figure: Data fitting for joint inversion; (a) observed vs. simulated pressure and (b) observed vs. simulated
zero-th moment of temperature breakthrough curves.

Parameters Results
Number of grids (unknowns) 29800
Number of wells 1 (injection), 4 (extraction), 8 (monitoring)
Number of measurements 4,000 (P only), 4,040 (P + 0-th moment of T)
Measurement error (std) 0.5 [m], 2.0 [◦C]
Total number of TOUGH2 runs 1,353 (P only), 1,780 (P + T)
Inversion time (hours) 2.3 (P only), 8.0 (P + T)

pyPCGA + pyTOUGH

• Coming soon! a Python library for automating TOUGH2 simulations and parameter
estimation for subsurface fluid and heat flow modeling: pyPCGA linked with
pyTOUGH as a seemless computing environment.

Conclusion

• PCGA scales well with the number of observations to high-dimensional inverse
problems with controlled accuracy (∼ total O(100) per pumping test).
• Small-scale variability and low permeability inclusions are better identified with the

addition of heat tracer test data.
• Computational efficiency of pyPCGA enables assessing the information content of

complex monitoring datasets for large scale subsurface characterization.
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