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Overview
Accurate numerical simulations for density-dependent flow and transport model is one
of the crucial keys for successful water resources management in coastal areas and on
islands. However, traditional modeling approaches without special treatment may not
be able to resolve accurate sharp moving fronts and corresponding groundwater flow
velocities due to the numerical instabilities.
In this presentation, we employ the enriched Galerkin finite element methods (EG),
which enriches a classical continuous Galerkin finite element methods such as SUTRA
with piecewise constant functions to ensure local and global mass conservation. EG has
the same bilinear forms as the discontinuous Galerkin (DG) finite element methods but
EG has fewer degrees of freedom in comparison with DG. Initial numerical results for
an existing benchmark problem show accuracy and efficiency of the proposed method
in density-driven flow modeling.

Mathematical Model

Let Ω be a computational domain with a boundary ∂Ω, and (0, T ] be a time interval
with T > 0, a final time. The governing conservation system is given as

∇ · u = 0, (1)

where the velocity u : Ω× (0, T ]→ Rd is Darcy velocity

u := −κρfg
∇h + ρ(c)− ρf

ρf
∇z

 . (2)

Here h : Ω× (0, T ]→ R is the pressure head, κ := k
µ, where k is a permeability, µ is a

fluid viscosity, ρf is the fresh water density, g is the gravitational force, z is the upward
coordinate direction aligned with g, and ρ(c) is the mixed fluid density defined by

ρ(c) := ρf + ∂ρ

∂c
(c− cf),

where c : Ω× (0, T ]→ R is the concentration of salt water and cf is the concentration
of fresh water. The above system is supplemented by the following boundary conditions

h = hD in ∂ΩD (3)

−κρfg
∇h + ρ(c)− ρf

ρf
∇z

 · n = q0 in ∂ΩN , (4)

where n is outward normal vector of ∂Ω. The transport system for concentration of
mass fraction of salt water c is described as

φ∂tc +∇ · (uc− φDeff∇c) = 0, (5)

where φ is the porosity and Deff is the diffusion dispersion tensor. The boundary of Ω for
transport system, denoted by ∂Ω, is decomposed into two parts Γin and Γout, the inflow
and outflow boundary, respectively. Those are defined as

Γin := {x ∈ ∂Ω : u · n < 0} and Γout := {x ∈ ∂Ω : u · n ≥ 0}. (6)

For each boundary, we employ the following boundary conditions

(uc− ϕDeff∇c) · n = cinu · n, on Γin× (0, T ], (7)
(−ϕDeff∇c) · n = 0, on Γout × (0, T ], (8)

where cin is a given inflow boundary value.

Enriched Galerkin Finite Element Method

Enriched Galerkin finite element method (EG) is formulated by enriching piecewise con-
stant functions to the classical continuous Galerkin methods (CG) for each element and
it has been employed to several interesting applications [1,2]. Figure 1 illustrates the
difference in the degrees of freedom for CG, discontinuous Galerkin (DG), and EG for
linear polynomials in quadrilaterals (Q1). EG has the same bilinear forms as the interior
penalty DG schemes, so EG inherits many advantages of DG, for example EG preserves
local mass conservation.
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Figure: Degrees of freedom for (a) CG, (b) DG, and (c) EG methods on a two dimensional Cartesian grid
Q with a linear polynomial order. Red nodes are the degrees of freedom for CG (DG) and blue circles in
the elements denote piecewise constants.

The main advantages of EG

•substantially fewer degrees of freedom in comparison with DG [1,2],
•optimal error convergence rates same as CG and DG [2],
• fast effective solver for elliptic/parabolic problems [2],
•dynamic local mesh adaptivity [3].

Numerical Results: Error Convergence Test

The convergence of the EG methods for flow and transport system (2)-(5) with the
gravity and the linear density function. Here we consider the exact solutions given by

p = cos(x− y), c = sin(t + x− y),

in the unit square Ω = (0, 1)2. For each of the flow and transport equations, respectively,
five computations on uniform meshes were computed where the mesh size h is divided
by two for each cycle. The time discretization is chosen fine enough not to influence
the spatial errors and the time step ∆t is divided by two for each cycle. Each cycle has
10, 20, 40, 80 and 160 time steps and the errors are computed at the final time T = 0.1.

Figure: Error convergence rates for pressure and concentration in semi-H1 norm and L2 norm, respectively.
Optimal order of convergences are observed for (left) linear and (right) quadratic orders. For quadratic,
BDF2 and extrapolation for temporal discretization are employed.

Numerical Results: Henry’s Benchmark
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Figure: A domain and setup

To validate our algorithms, we compute the Henry’s benchmark problem which considers
saltwater intrusion situation. The initial condition c = 0 is imposed to indicate that the
domain [0, 2m] × [0, 1m] is initially filled with saltwater, and a Dirichlet boundary for
concentration c = 1 is applied on the right boundary, and cin = 0 on the left boundary.
All other physical coefficients are identical as given in the original benchmark problem.
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Figure: Concentration (c), freshwater hydraulic head (h), and pressure (p) values at the equilibrium.

Ongoing Works

•Dynamic mesh adaptivity
•Efficient preconditioner constuction
•Coupling with an inverse modeling approach (pyPCGA) to characterize permeability
in coastal aquifers [4,5]
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