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Motivation

Researchers would like to know the structure of deep subsurface for optimal
water resources management and scientific research.

Magnetotelluric (MT) survey is the one of a few options to image deep
subsurface structure.

Synthetic “true” resisitivity field (reciprocal of electrical conductivity)
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Motivation

Recently, the UHM geophysics and subsurface modeling teams visited a field
site in Big Island and we would like to perform as many surveys as possible
while we stay in the site.

Can we make a real-time decision of which location we need to install MT
instruments for better subsurface characterization?
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Motivation

Q: Can we check site characterization results right away for a real-time decision
of next MT survey locations?

A: Yes! (during lunch time at latest)

Real-time close-loop optimal MT survey design
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EM in Geophysics

EM-based Geophysical method examples:

1 Magnetotelluric (MT): a passive geophysical investigation for deep
subsurface regions

2 Ground-penetrating Radar (GPR): high resolution imaging for shallow
regions, e.g., UXO detection

3 Marine Controlled-source ElectroMagnetic (CSEM): for offshore oil and
gas exploration

EM field generated by active or passive sources sensitive to subsurface
conductivity variations in the region between the source and receivers

For MT, the instrument measure naturally occuring, very low frequency
EM waves (telluric currents) that penetrate into the earth

Analysis of the variations in the electrical voltage and electromagnetic
wave energy will enable us to determine the electrical resistivity of the
rocks and to identify groundwater flow occurring at varying depths in the
subsurface.
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MT Modeling

∇× E− iωµH = Ms

∇×H− σ = Js

E := frequency-domain electric field
H := magnetic field
Ms := electric sources
Js := magnetic sources

quasi static approximation for low frequency geophysics applications
(neglecting imaginary component - dielectric permittivity)

MARE2DEM [Key, 2016] 1: FEM solver with adaptive meshing refinement
in terms of EM response accuracy at the receivers

Support MPI for strong scaling with domain/data decomposition in
different frequencies/receivers

1http://mare2dem.ucsd.edu/
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Inverse Problem

Input s EM model h(s) Output y

In the forward problem, given model parameters, s, EM model (e.g.,
MARE2DEM) predicts the state of the system y

s is typically conductivity/resistivity, but could be other rock properties
such as permeability, or boundary conditions

y are EM responses/measurements

In the inverse problem, we use measurements of y to estimate s

MARE2DEM is now used to calculate the sensitivity of measurements to
parameters, i.e., Jacobian
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Inverse Problem in Hierarchical Bayesian Framework

Consider the measurement equation

y = h(s) + v v ∼ N (0,R)

y := nobs × 1 noisy measurements pressure, temperature
h := EM forward model e.g., MARE2DEM
v := measurement and model error uncertainty and error
s := nunknowns × 1 permeability

s ∼ N (sprior ,Qprior )

Parameters are treated as random variables in a statistical framework
(e.g., Gelman, Calin, and Stern, 2013; Kitanidis, 2010, Kitanidis, 1995)

Use covariances Q and R to represent variability and uncertainty

Objective: A best estimate of unknowns and corresponding uncertainty
at each grid cell of the numerical model, given a set of measurements

Using Bayes’ rule, the posterior pdf is

p(s|y) ∝ p(y |s)︸ ︷︷ ︸
Data misfit

p(s)︸ ︷︷ ︸
Prior

Data misfit - How well the model reproduces data
Prior - Prior knowledge of unknown field structure

Best estimate is obtained by maximizing the likelihood of s given a set of
measurements y, using GN optimization:

p(s) ∼ exp

−1

2
(y − h(s))>R−1(y − h(s))︸ ︷︷ ︸

likelihood

−1

2
(s− sprior )

>Q−1
prior(s− sprior )︸ ︷︷ ︸

prior


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Inverse Problem: the challenges for large systems

Input s EM model h(s) Measurements y

For large-scale systems:

Typically many unknowns, few measurements nobs � nunknowns

Requires O(min(nobs , nunknowns)) EM model runs or more

O(n2) or O(n3) matrix computation and storage costs

Therefore:

Fast Linear Algebra is necessary to reduce computation and storage
Matrix-matrix, matrix-vector multiplications

Allowable number of forward model runs
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pyPCGA: Fast and Scalable Inversion Tool in Python2

Principal Component Geostatistical Approach:
A computationally efficient algorithm for geostatistical (spatially distributed
unknown) inversion based on the dimension reduction of Hierarchical Bayesian
inverse solution through the optimal compression of prior covariance and
Jacobian-free evaluation of sensitivity.1
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1Lee and Kitanidis, 2014, Lee, 2016
2https://github.com/jonghyunharrylee/pyPCGA
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pyPCGA: Fast and Scalable Inversion Tool in Python

Compression of the covariance matrix reduces the number of matrix-vector
multiplications to O(npc):

Qprior = U1:npc Σ1:npc UT
1:npc

Calculation of sensitivity matrix requires EM model runs, black-box style, using
the finite difference approach:

Hs =
h (s + ∆s)− h (s)

∆s

Computations involving large matrices (Q, H) utlilize fast linear algebra that
allows fully parallelizable, fast matrix-vector multiplications:

Fast Fourier Transform (FFT) approach for regular grids1

Fast Multipole Method (FMM) and Hierachical Matrices Approach for
unstructured grids2

1https://github.com/arvindks/kle
2https://github.com/ruoxi-wang/PBBFMM3D
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PBBFMM3D: Parallel Black-Box Fast Multipole Method
for O(n) matrix operations

Typical covariance matrix-Jacobian column vector products requires O(n2) and
eigen-decomposition of covariance matrix needs O(n3) computational costs.

To achieve linear scalability, we develop and use Parallel Black-Box Fast
Multipole Method (PBBFMM3D)1 leading to O(nunknownsnpc) computation
costs for truncated eigendecomposition (using randomized SVD)

Hierarchical decomposition1
local/multipole operations2

1Wang, Chen, Lee, Darve, https://github.com/ruoxi-wang/PBBFMM3D
2Agullo et al., 2014
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PBBFMM3D: Parallel Black-Box Fast Multipole Method
for O(n) matrix operations

3 minutes for 1 M x 1 M covariance matrix eigenvalue decomposition with 100
modes on a 36 CPU core machine
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pyPCGA: Advantages

Computational gain:

Matrix computations scale linearly with number of unknowns

∼ O(100) forward model runs for large domains (for � 106 unknowns)

Parallelization further accelerates inversion

Linear scaling makes possible the inversion of domains with millions of
unknowns and observations1.

1Lee et al., 2016
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pyPCGA: Advantages

Method Adjoint-based method PCGA
# of simulation runs nobs + 1 npc + 1
matrix multiplication O(nobsnunknowns) O(nunknownsnpc)

storage O(nobsnunknowns) O(nobsnpc)

npc + 1 simulation runs in each iteration

npc ∼ O(100) or less for many problems in earth science

Can handle large measurements (e.g, 107 measurements)

Easy to implement; treat multi-physics models as a “blackbox” like
Ensemble-based methods

Parallel executions
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Numerical Example - Real-time EM imaging

nunknowns = 10, 000, nobs = 5, 248 (21 receivers x 32 frequency bands, EM
amplitude and phase)

measurement error assumed to be Gaussian with 0.1

npc = 50

Took 2 iterations in 10 mins with ∼ 100 model runs on a 36 CPU core
workstation.
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Results - the best estimate
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Results - Data Fitting
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Results - Estimation Uncertainty
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Concluding Remarks

Dimension reduction technique for prior covariance allows fast inverse
modeling and data assimilation without much loss of accuracy.

Work in-progress : sharp boundary object reconstruction using
total-variation (compressed sensing) and level set priors
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