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Spatially Assembled GANs (SAGANs)

Objective
• To improve the computational cost and scalability of standard GANs framework, 

we proposed a fast and scalable GANs framework, called the spatially 

assembled GANs framework (SAGANs).

Experimental Results

Generative Adversarial Neural Networks (GANs)

• GANs are deep learning frameworks to develop generative models via adversarial 

two neural network models (G and D model).

• G model (generator) – a generative model generates samples through learning to 

map from  a latent space to a particular data distribution of real samples

• D model (discriminator) – a discriminative model determines whether given 

samples were a generated (fake) sample by G model or real samples.

• Deep Convolutional GANs (DCGANs) : GANs adopting deep convolutional 

networks.

• Fully convolutional nature of DCGANs allows the stable training and the

generation of many samples that contain the similar properties to training data and

with computational efficiency.
• The  architecture  of  deep  convolution  neural  networks  for DCGANs and 

SAGANs was constructed based on the guidelines proposed by Radford et al. (2015)

• All computational works in this study were performed using the same computer 

equipped with two NVIDIA TITAN-V GPU cards.

• Standard GANs (DCGANs) with a single TI generated the same realization of 

images as the TI.

• SAGANs produced the various patterns and arbitrary size of realization 

with keeping its statistics (the long-range connectivity) even in a single TI.

• Main conceptual idea

The local probability in the disassembled generated images (segments) is estimated 

by the discriminator, and then assembled into a global probability. 

• No architectural constraint between G and D model

The size of the generated output in the G model need not to be identical to the size 

of the input of D model.

• This enable SAGANs to produce the realizations with the scalability and

computational efficiency.

Development of DCGANs & SAGANs

Loss of D model:

Loss of G model:

Loss of D model:

Loss of G model:

• Three training images (TIs) datasets widely

used for geostatistical simulation.

• These datasets have simple structures, but

are proven to be very challenging as the

training image for the GANs

- the long-range connectivity

- discrete and dispersing nature
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Background

• Rock reconstruction

o The rock with complex morphological geometry and compositions such as shale and

carbonate rocks, is typically characterized with sparse field samples because of an

expensive and time-consuming characterization process.

o Accurate capture and realization of the underlying complex stochastic properties of the

geological texture with a limited set of samples has long been an important issue in the

rock reconstruction.

• Geostatistical methods
o Many geostatistical methods such as multiple-point statistics have been developed and 

achieved in many successful applications. 

o But they suffer from limitations inherent to the algorithms :

computational cost, visual artifacts, and a low variability in the realization

• Generative models using deep learning

o Recently, Generative Adversarial Neural Networks (GANs) have demonstrated remarkable

results in terms of image or texture synthesis.

o Variation of GANs-based models have been developed and applied to the rock

reconstruction.

o However, the rock reconstruction with GANs framework still requires considerable

computational costs which can be prohibitive for high-resolution applications (2D and 3D)

and scalable applications due to a constraint on the size of training samples.

• Both DCGANs and SAGANs produced the realizations  with  various  size  of  

spherical  beads.

• Beads in the realizations by SAGANs have more spherical shape and less 

overlapped each other (well-spread) than the realizations by DCGANs.

• DCGANs have the limits 

in generating the arbitrary 

large size of realizations 

due to the cropping area 

(or the seam) of the 

original TIs.

• SAGANs can produce 

seamless arbitrary size of 

realization.

<Comparison of results on Strebelle’s TI> <Morphological descriptor> <Arbitrary size of realization on Strebelle’s TI >

(1,040 by 528)

<Comparison of results on Beadpack(2D) > <Morphological descriptor>

< Training images (TIs) used in this study >

< Summary of training images (TIs) >

< Architecture and Parameters applied to GANs in this study >

• SAGANs could produce  the  3D  realizations  of  the  arbitrary  larger  size  

and  with  diversity even in a single of 3D TI.

• SAGANs could also produce the larger size of 3D realizations with low

computational time and load which DCGANs could not generate due to the

lack of GPU memory.

<Comparison of results on 3D TIs > < Arbitrary size of 3D realization by SAGANs  >

< Comparison of training time between SA-GANs and DCGANs  >
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