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Global optimization

Figure 1: Fig 2.2 from Nocedal & Wright [2006]

• We have learned “local” optimization methods
• How can we solve the optimization problem like one with
objective function in Figure 1?
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When global optimization is needed?

• We saw Newton’s method converges fast to the (local) optimum
• What if our objective function is very complex with many local
optima as in Figure 1?

• One solution might be the one we start multiple initial guesses
• In many nonlinear optimization problems, the objective
function f has a large number of local minima and maxima.

• Furthermore, f may be non-differentiable and non-continuous.
• Global optimization finds the maximum or minimum over all
input values, as opposed to finding local minima or maxima.
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Two ways to solve global optimization

1. Formulate/modify a global optimization problem into a
tractable one with local optimization (e.g., convex optimization)

2. Use global optimization methods

Here, we focus on global optimization methods for general
optimization problems.

If time is allowed, we will cover convex optimization.
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Python Scipy optimization routines
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Global optimization algorithms

• deterministic approach vs. stochastic approach
• stochastic, metaheuristic approaches are popular in
engineering because they are easy to use

• Simulated Annealing
• Evolutionary Computation

• Genetic Algorithm (GA)
• Differential Evolution

• particle swarm optimization, ant colony optimization and so on
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Global optimization algorithms - stochastic approach

• Smart random search
• Computational cost (number of objective function evaluation) is
high

• They are random, i.e., optimization result can change in every
run

• Easy to implement - your numerical simulation considered as
black box

• No guarantee for convergence.
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Simulated Annealing (Basin Hopping in scipy.optimize)

• A probabilistic technique for approximating the global optimum
of a given function

• Name comes from metal annealing, heating and cooling of a
material to increase the size of its crystals and reduce their
defects

• Adapted from Metropolis-Hastings algorithms in 1953, which is
used to generate sample states of thermodynamic system

• “basinhopping” in scipy.optimization (“simulated annealing” has
been deprecated)
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Simulated Annealing (Basin Hopping in scipy.optimize)

• A metal is heated to a high temperature
• The metal is gradually cooled on a specific schedule you specify
• As the metal cools, its atoms settle into an optimal
(thermal-equilibrium) crystalline structure

• Annealing improves the cold-working properties of metal
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Simulated Annealing

1. Start with initial guess
2. Calculate energy E of initial guess (i.e., objective value)
3. Set initial temperature T
4. While T > cutoff/stopping T

4.1 find a test solution
4.2 Calculate E of the solution (i.e., objective value)
4.3 δ = obj(test) - obj(previous solution)
4.4 if δ < 0: update solution and obj
4.5 elif exp(− δ

T ) > random.uniform(0, 1): update solution and obj
4.6 decrease T

5. End
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Mechanisms in Simulated Annealing

• Early in the search, SA explores the decision variable space
• As the search progresses, SA refines the search
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How does it work?

• https://www.youtube.com/watch?v=iaq_Fpr4KZc
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Scipy.optimize.basinhopping

scipy.optimize.basinhopping(func, x0, niter=100, T=1.0,
stepsize=0.5,minimizer_kwargs=None,
take_step=None, accept_test=None,
callback=None, interval=50,
disp=False, niter_success=None)

func Function to be optimized
x0 initial guess
T temperature parameter for the accept or reject
criterion

minimizer_kwargs arguments for local optimization routine
take_step user-defined step-taking algorithm

accept_test user-defined step-acceptance algorithm
callback function called for all minimum found
interval interval for how often to update the stepsize
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Scipy.optimize.basinhopping

Download and run the example script
http://www2.hawaii.edu/~jonghyun/classes/S18/
CEE696/files/example_basinhopping.py
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Genetic Algorithm (GA)

• Developed by John Holland in 1975, many developments since
then

• applications to real world problems
• Mimics mechanics of natural selection and genetics
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Genetic Algorithm

1. Create Initial population
2. Selection individuals
3. Crossover & Mutation
4. Evaluation Fitness function
5. Repeat 2 - 5 until converges
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GA - Chromosome representation & initial population

• Let’s assume our decision variable x is an integer ∈ [0, 127] for
an optimization problem.

• with x′ = bin(x), i.e., string represented in 6-length binary
• For example, x′ can be 000000 (0), 000001 (1), 000010 (2), 000011
(3), · · · , 111111 (127).

• Then generate “n” number of random strings (chromosome).
This is our initial population.

• For example, we have an initial population of 6 parents:
• 001000, 010010, 101110, 000101, 100000, 010111
• Their fitness (of survival) is determined by user-defined
objective function, i.e., obs(x)
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GA operators - Crossover & Mutation

Now we are generating offsprings of initial population. We are
mating parent: 101110, 000101

Crossover: choose one or two points in the chromosome

1. One point crossover: 101110, 000101 => 101101, 000110
2. Two point crossover: 101110, 000101=> 100110, 001101

Mutation:

1. Bit inversion 1 => 0, 0 => 1

Create n offspring for the new generation and repeat this step until
the maximum number of iterations.
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Scipy.optimize.differential_evolution

GA is similar to differential evolution algorithm and python offers
differential_evolution

differential_evolution(func, bounds, args=(),
strategy='best1bin', maxiter=1000,
popsize=15, tol=0.01, mutation=(0.5, 1),
recombination=0.7, seed=None,
callback=None, disp=False, polish=True,
init='latinhypercube', atol=0)

strategy The differential evolution strategy to use
popsize A multiplier for setting the total population size. The

population has popsize * len(x) individuals.
mutation user-defined step-taking algorithm

recombination crossover probability
seed random seed for pseudo random algorithm
init population initialization method (latinhypercube or
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Differential Evolution

from scipy.optimize import rosen, differential_evolution
bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
result = differential_evolution(rosen, bounds)
print(result.x)
%(array([1., 1., 1., 1., 1.])
print(result.fun)
%1.9216496320061384e-19
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Scipy.optimize.brute

More like deterministic optimization technique

scipy.optimize.brute(func, ranges, args=(),
Ns=20, full_output=0,
finish=<function fmin>,
disp=False)

ranges grid points or bounds for function evaluations
Ns a number of grid points if bounds are defined in ranges

finish a local optimization can be called with the result of
brute force minimization as initial guess
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Exercise - groundwater supply optimization

Use global optimization approaches for our previous examples

basinhopping:

https://www2.hawaii.edu/~jonghyun/classes/S18/
CEE696/files/opt_max_pumping_basinhopping.py
differential differential_evolution:

https://www2.hawaii.edu/~jonghyun/classes/S18/
CEE696/files/opt_max_pumping_DE.py
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