
Optimization with Scipy (2)
Unconstrained Optimization Cont’d & 1D optimization

Harry Lee
February 5, 2018

CEE 696

Table of contents

1. Unconstrained Optimization

2. 1D Optimization

3. Multi-dimensional unconstrained optimization

4. Optimization with MODFLOW

1

Unconstrained Optimization

Minimization routine inputs

For a general (black-box) optimization program, what inputs do you
need?

• objective function
• constraint functions
• optimization method/solver
• additional parameters:

• solution accuracy (numerical precision)
• maximum number of function evaluations
• maximum number of iterations

2

Optimization problem

Find values of the variable x to give minimum of an objective
function f(x) subject to any constraints (restrictions) g(x),h(x)

min
x

f(x)

subject to gi(x) ≥ 0, i = 1, . . . ,m
hj(x) = 0, i = 1, . . . ,p
x ∈ X

Assume X be a subset of Rn

x : n× 1 vector of decision variables, i.e., x = [x1, x2, · · · , xn]

f(x): objective function, Rn → R

g(x): m inequality constraints Rn → R

h(x): p equality constraints Rn → R

3

Unconstrained optimization (1)

Find values of the variable x to give minimum of an objective
function f(x)

min
x

f(x)

x ∈ X

Assume X be a subset of Rn

x : n× 1 vector of decision variables, i.e., x = [x1, x2, · · · , xn]

f(x): objective function, Rn → R

4

Unconstrained optimization (2)

For now, we will assume

• continuous, smooth objective function f(x): Rn → R

• smoothness, by which we mean that the second derivatives
f′′(x) (∇2f) exist and are continuous.

• Constrained optimization problems can be reformulated as
unconstrained Optimization

• In specific, the constraints of an optimization problem becomes
penalized terms in the objective function and we can solve the
problem as an unconstrained problem.

5

Solution to optimization problem : global vs local optimum

A point x∗ is a global minimizer if f(x∗) ≤ f(x) for all x

A point x∗ is a local minimizer if there is a neighborhood N of x∗
such that f(x∗) ≤ f(x) for all x ∈ N

Figure 1: Fig 2.2 from Nocedal & Wright [2006]
6

Gradient

The vector of first-order derivatives of f is the gradient

∇f(x) =
(

∂f
∂x1

,
∂f
∂x2

, · · · , ∂f
∂xn

)T

where
∂f
∂xi

= lim
ϵ→0

f(x+ ϵei)− f(x)
ϵ

and ei is the n× 1 vector consisting all zeros, except for a 1 in
position i

ex) f(x) = x21 + x22
∇f(x) = (2x1, 2x2)T

7

Hessian

The matrix of second-order derivatives of f is the Hessian

∇2f(x) =

∂2f
∂x21

∂2f
∂x1∂x2 . . . ∂2f

∂x1∂xn
∂2f

∂x2∂x1
∂2f
∂x22

. . . ∂2f
∂x2∂xn

...
... . . .

...
∂2f

∂xn∂x1
∂2f

∂xn∂x2 . . . ∂2f
∂x2n

ex) f = x21 + x22

∇2f =
[
2 0
0 2

]

8

Before we start

always add this!

import scipy.optimize as opt
import numpy as np
import matplotlib.pyplot as plt

9

Objective function

We will use this 2D example problem:

def func(x):
"""2D function x^2 + y^2"""
return x[0]**2 + x[1]**2

x = np.linspace(-5, 5, 50)
y = np.linspace(-5, 5, 50)

X,Y = np.meshgrid(x,y) # meshgrid
XY = np.vstack([X.ravel(), Y.ravel()]) # 2D to 1D vertically
Z = func(XY).reshape(50,50) # back to 2D

plt.contour(X, Y, Z) # plot contour
plt.text(0, 0, 'x', va='center', ha='center',

color='red', fontsize=20)
plt.gca().set_aspect('equal', adjustable='box')#equal axis
plt.show()

10

Gradient and Hessian Information

def func_grad(x):
'''derivative of x^2 + y^2'''
grad = np.zeros_like(x)
grad[0] = 2*x[0]
grad[1] = 2*x[1]
return grad

def func_hess(x):
'''hessian of x^2 + y^2 '''
n = np.size(x) # we assume this a n x 1 or 1 x n vec
hess = np.zeros((n,n),'d')
hess[0,0] = 2.
hess[1,0] = 0.
hess[0,1] = 0.
hess[1,1] = 2.
return hess

11

def reporter(x):
"""Capture intermediate states of optimization"""
global xs
xs.append(x)

x0 = np.array([2.,2.])
xs = [x0]
opt.minimize(func,x0,jac=func_grad,callback=reporter)
#opt.minimize(func,x0,jac=func_grad,hess=func_hess,
callback=reporter)

xs = np.array(xs)
plt.figure()
plt.contour(X, Y, Z, np.linspace(0,25,50))
plt.text(0, 0, 'x', va='center', ha='center',

color='red', fontsize=20)
plt.plot(xs[:, 0], xs[:, 1], '-o')
plt.gca().set_aspect('equal', adjustable='box')
plt.show() 12

How about f = 5x2 + y2?

def func(x):
"""2D function 5*x^2 + y^2"""
return 5*x[0]**2 + x[1]**2

def func_grad(x):
'''derivative of 5*x^2 + y^2'''
grad[0] = 10*x[0]

def func_hess(x):
'''hessian of 5*x^2 + y^2 '''
hess[0,0] = 10.

13

Results

(a) x2 + y2 (b) 5x2 + y2

14

Unconstrained optimization

So, general procedure is:

1. Choose an initial guess/starting point x0
2. Beginning at x0, find a sequence of iterates xk (x1, x2, x3, · · · , x∞)
with non-increasing function (f(xk)) value until a solution point
with sufficient accuracy is found or until no further progress can
be made.

To find the next intermediate solution xk+1, the algorithm routines
use information about the function at xk (and possibly earlier
iterates).

15

Steepest gradient

What if we use gradient information alone? Initial guess is (0.4,2.0).

(c) x2 + y2 (d) 5x2 + y2

We will discuss this more once we finish 1D optimization

16

1D Optimization

1D optimization (1)

Why is 1D optimization important?

• Easy to understand with straightforward visualization
• Many optimization algorithms are based on the optimization of
a 1D continuous function.

• In fact, many multi-dimensional problems are solved or
accelerated by sequentially solving 1D problems.

• ex) Line search

17

1D optimization (2)

• (Like multi-dimensional problems) no universal algorithm
rather a collection of algorithms

• Each algorithm tailored to a particular type of optimization
problem

• Generally, more information on objective function means better
optimization (with increased number of function evaluation)

• Then, we have to make sure the solution we found is really
optimal one: check optimality conditions

• If not satisfied, function will give information

18

1D optimization - Optimality conditions

min f(x), x ∈ R

If f is twice-continuously differentiable, and a local minimum of f
exists at a point x∗, two conditions hold at x∗:

Necessary conditions Sufficient conditions
1) f′(x∗) = 0 1) f′(x∗) = 0
2) f′′(x∗) ≥ 0 2) f′′(x∗) > 0

Thus finding a minimum becomes “finding a zero” of f′(x)

19

How to find zero?

Numerically, one never finds exactly a zero, but can identify only a
small interval such that

f(a)f(b) < 0, |a− b| < tol

zero will be within [a,b], thus we say that the zero is “bracketed”.

Note that f(a)f(b) < 0 is a sufficient condition for bracketing a zero,
not a necessary one.

From this, we can construct zero-finding algorithms:

What is the simplest, straightforward zero-finding approach?

20

Before we start

Always add these lines for the class!

import scipy.optimize as opt
import numpy as np
import matplotlib.pyplot as plt

21

Finding zero - (1) Bisection Method

Figure 2: bisection/interval halving from wikipedia

22

Finding zero - (1) Bisection Method

1. input objective function f, endpoints xleft, xright, tolerance tol,
maximum iteration maxiter

2. cut interval in half each time
3. compute xmid = 1

2
(
xleft + xright

)
4. Based on the sign of f(xmid), replace xleft or xright with xmid
5. stop xright − xleft is sufficiently small

23

Finding zero - (1) Bisection method

scipy.optimize.bisect(f, a, b, args=(), xtol=1e-12,
rtol=4.4408920985006262e-16, maxiter=100, full_output=False,
disp=True)

output:

x0 : (float) zero of f

res : (RootResults) object for detailed output (only if full_output
= True)

def func(x):
return np.cos(x)

a root of cos is x=np.pi/2
x0, res = opt.bisect(func, 1, 2, full_output = True)
print("exact value = %f" % (np.pi/2.))

24

Finding zero - (1) Bisection method

HW 2.1 write your own bisection method!

INPUT: function f, endpoints a, b, tol, maxiter
Require: a < b
i← 0, xleft ← a, xright ← b

Ensure: f(xleft)f(xright) < 0

while i ≤ maxiter do
xmid ← 0.5(xleft + xright)
if f(xmid) = 0 or xright − xleft < tol then

return xmid
i← i+ 1
if f(xleft)f(xmid) > 0 then

xleft = xmid
else

xright = xmid 25

Rate of Convergence

The bisection method only uses the sign values instead of the
function values, so it tends to converge slowly.

One of the key measures of performance of an optimization
algorithm is its rate of convergence:

∥xk+1 − x∗∥
∥xk − x∗∥p

≤ M for all k sufficiently large

where M is a constant and p indicates rates of convergence. for p = 1,
it has linear convergence, for 1< p < 2, superlinear convergence, for p
= 2, quadratic convergence

26

Finding zero - (2) Secant method

We can improve the rate of convergence by using additional
information - approximate the objective function f(x) with linear
interpolation:

Figure 3
27

Finding zero - (3) Brent method

Combine bisection and secant methods.

The method approximates the function f(x) with parabolic
interpolation.

28

Finding zero - (3) Brent method

scipy.optimize.brent(func, args=(), brack=None, tol=1.48e-08,
full_output=0, maxiter=500)

def f(x):
return x**2

xmin, fval, iter, nfuncalls
= opt.brent(f,brack=(-5,0,5),full_output=True)

29

Finding zero - (4) Newton-Raphson Method

If derivative of f (this is actually second order derivative of the
original function!) is available, we can do linear interpolation:

f(xk+1) ≈ f(xk) + f′(xk)(xk+1 − xk)

if we rearrange the equation above with f(xk+1) = 0,

xk+1 = xk −
f(xk)
f′(xk)

Do this until it converges.

See the movie below
https://en.wikipedia.org/wiki/Newton%27s_method#
/media/File:NewtonIteration_Ani.gif

30

https://en.wikipedia.org/wiki/Newton%27s_method#/media/File:NewtonIteration_Ani.gif
https://en.wikipedia.org/wiki/Newton%27s_method#/media/File:NewtonIteration_Ani.gif

Multi-dimensional unconstrained
optimization

Steepest gradient (1)

(a) x2 + y2 (b) 5x2 + y2

1. input objective function f and starting point x0
2. at iteration k, compute search direction pk = −∇f at xk
3. set αk = 1 or perform line search: min

αk
f(xk + αkpk)

4. update xk+1 = xk + αkpk
5. repeat 2-4 until it converges

31

Steepest gradient (2) - HW2.2

HW 2.2 write your own steepest gradient method!

INPUT: function f, gradient ∇f, initial point x0, tolerance tol,
maximum iteration maxiter, boolean linesearch

while k ≤ maxiter and ∥xk − xk−1∥ ≥ tol do
g← ∇fxk
p← −gk
if linesearch then

αk ← argmin
α

f(xk + αpk)
xk+1 ← xk + αkpk

else
xk+1 ← xk + pk

k← k+ 1

32

Newton’s method (1)

1. The steepest descent method uses only first derivatives
2. Newton-Raphson method or so-called Newton’s method uses
both first and second derivatives and performs better!

Recall from 1D Newton-Raphson method (for minimization instead of
zero-finding):

f(xk+1) ≈ f(xk) + f
′
(xk)(xk+1 − xk) +

1
2 f

′′
(xk)(xk+1 − xk)2

if we rearrange the equation above with f(xk+1) = 0,

xk+1 = xk −
f′(xk)
f′′(xk)

33

Newton’s method (2)

Like 1D, Newton’s method forms a quadratic model of the objective
function around the current iterate

f(x) ≈ f(xk) + (x− xk)Tgk +
1
2 (x− xk)

THk(x− xk)

where we use gk = ∇f(xk), Hk = ∇f2(xk) for simplicity.

Then we can find the local optimum by ∂f
∂x = 0 :

0 = gk + Hk(x− xk)

The next iterate is then

xk+1 = xk − H−1
k gk

34

Newton’s method (3)

xk+1 = xk − Hk
−1gk

xk+1 = xk − αkHk
−1gk

This is called the Newton step.

(c) 52 + y2 with steepest gradient
method

(d) 5x2 + y2 with Newton’s method
35

Newton’s method (4)

HW 2.3 write your own Newton’s method:

INPUT: function f, gradient ∇f, Hessian ∇2f, initial point x0,
tolerance tol, maximum iteration maxiter, boolean linesearch

while k ≤ maxiter and ∥xk − xk−1∥ ≥ tol do
g← ∇fxk , H← ∇f2xk
pk ← −H−1g
if linesearch then

αk ← argmin
α

f(xk + αpk)
xk+1 ← xk + αkpk

else
xk+1 ← xk + pk

k← k+ 1

For H−1g, use numpy.linalg.solve(H,g)
36

Optimization with MODFLOW

my_first_opt_flopy_optimization.py

Our first application is groundwater supply maximization while
keeping minimal head drops.

We reuse our first flopy example with constant head = 0 m at left and
right boundaries, assume a pumping well at the center of domain
and allow 1 m head drop.

Then our optimization problem is formulated as

max
Q

Q

subject to hi(x) ≥ −1, i = 1, . . . ,m

How can we perform this optimization?

37

Back to Flopy

We need to evaluate head distribution using MODFLOW. See Flopy
well modeling slide first:

https://www2.hawaii.edu/~jonghyun/classes/S18/
CEE696/files/09_flopy_example2.pdf

38

https://www2.hawaii.edu/~jonghyun/classes/S18/CEE696/files/09_flopy_example2.pdf
https://www2.hawaii.edu/~jonghyun/classes/S18/CEE696/files/09_flopy_example2.pdf

Reformulation to unconstrained optimization

What we learned so far is unconstrained optimization while our
problem is constrained optimization. But we can convert the
constrained optimization to unconstrained optimization by adding a
penalty term!

max
Q

Q

subject to hi(x) ≥ −1, i = 1, . . . ,m

min
Q
−Q+ 1{hi(x)<−1}λ(hi(x) + 1)2

where 1condition is an indicator function (1 for condition = true,
otherwise 0) and λ is a big number for penalty.

39

Run this

https://www2.hawaii.edu/~jonghyun/classes/S18/
CEE696/files/my_first_opt_with_flopy.py

40

https://www2.hawaii.edu/~jonghyun/classes/S18/CEE696/files/my_first_opt_with_flopy.py
https://www2.hawaii.edu/~jonghyun/classes/S18/CEE696/files/my_first_opt_with_flopy.py

	Unconstrained Optimization
	1D Optimization
	Multi-dimensional unconstrained optimization
	Optimization with MODFLOW

