## Python Numpy (1)

Intro to multi-dimensional array \& numerical linear algebra

Harry Lee
January 29, 2018
CEE 696

## Table of contents

1. Introduction
2. Linear Algebra

## Introduction

## From the last lecture

import numpy as np
ibound = np.ones((NLAY,NROW,NCOL), dtype=np.int32)
We have used numpy package and its array objects for MODFLOW model setup. Let's dig into them.

## Why Numpy?

- the core library for scientific computing in Python.
- multi-dimensional array object
- math tools for working with these arrays
- interfaces to standard math libraries coded in a compiled language (written in C++ or Fortran) for speed


## Have you used MATLAB or R?

Numpy for matlab users:
http://www.numpy.org/devdocs/user/ numpy-for-matlab-users.html

## Next slides..

- Array creation
- Array access/slicing
- Array operations


## Numpy Example

import numpy as np
a = np.array([1, 2, 3, 4]) \# Create a "rank" 1 array print(type(a))
print(a.shape)
print(a[0], a[1], a[2], a[3]) \# "1 23 4"
$a[1]=4$
print(a)
\# Change an element
\# "[1, 4, 3, 4]"
b = np.array([[1,2],[3,4]])
print(b.shape)
print(b[0, 0], b[0, 1], b[1, 0]) \# "1 2 3"
Note that "rank" in python means the number of dimensions of an array while "rank" in linear algebra is the maximum number of linearly independent columns of a 2D matrix.

## Anatomy of Numpy Array

## Anatomy of an array



- all elements must be of the same dtype (datatype)
- the default dtype is float
- arrays constructed from list of mixed dtype will be upcast to the "greatest" common type

Figure 1: http://pages.physics.cornell.edu/~myers/teaching/ ComputationalMethods/python/arrays.html

## Numpy Array (1) - Creation

```
a = np.zeros((2,2)) # all zeros
print(a)
# [[ 0. 0.]
# [ 0. 0.]]
b = np.ones((1,2)) # all ones
print(b)
# [[ 1. 1.]]
c = np.full((2,2), 3.) # constant array
print(c)
    # [[ 3. 3.]
    # [ 3. 3.]]
d = np.eye(2) # identity matrix
print(d)
# [[ 1. 0.]
# [ 0. 1.]]
e = np.random.random((2,2)) \# random array print(e)

\section*{Numpy Array (2) - Data Type}
x = np.array([1, 2]) \# numpy will choose its datatype print(x.dtype) \# datatype = int64
\(x=n p . \operatorname{array}([1.0,2.0])\)
print(x.dtype)
\# datatype = float64
\# for single-precision MODFLOW (see available executable IBOUND = np.array([1, 2], dtype=np.int32) print(x.dtype)
\# one can use dtype = "d" for double-precision
\# i.e, np.float64
HK = np.ones((100,100),'d')

\section*{Numpy Array (3) - Modification}
```

a = np.array([[1,2],[3,4]])
b = np.array(a) \# create a new array
c = a
\# referencing
print(a)
print(b)
print(c)
a[0,0] = 10
print(a)
print(b)
print(c) \# this is easy.. wait, what?

```

\section*{Reference/Shallow Copy vs. Deep Copy}

This is one of the most confusing aspects for beginners. Be careful!
a \(=[1,2,3]\) \# type(a) : list
b \(=\) a
c = a[:] \# NOT for list with nested structure and np.arr
b[1] = 10
print(id(a), a)
print(id(b),b)
print(id(c), c)
\(x=n p \cdot \operatorname{array}([1,2,3])\)
\(\mathrm{y}=\mathrm{x}\)
\(z=n p . \operatorname{copy}(x)\)
\(x[0]=10\)
print(id(x),x)
print(id(y),y)
print(id(z),z)

\section*{Numpy Array (4) - Slice Notation CONT}

We use "slicing" to pull out the sub-array
\[
\begin{gathered}
\text { a[start:end] } \\
\text { a[start:end:step] }
\end{gathered}
\]

Make sure the [:end] value represents the first value that is not in the selected slice.
\# create an array
a = np.array ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10] )
a[:] \# a copy of the whole array
\(a[0: 10]\) \# = \(a[0:]=a[: 10]=a[:]=a[::]\)
\(a[0: 10: 2]\) \# = \(a[: 10: 2]=a[:: 2]\)
a[-1] \# last item in the array
a[-2:] \# last two items in the array
a[:-2] \# everything except the last two items

\section*{Numpy Arrays (5) - Slice Notation CON'T}
\# create an array
\(\mathrm{a}=\mathrm{np} . \operatorname{array}([[1,2,3],[4,5,6],[7,8,9]])\)
\(b=a[: 2,1: 3]\)
\# This is IMPORTANT!!
print(a)
\(\mathrm{b}[0,0]=10 \quad \# \mathrm{~b}[0,0]\) from \(\mathrm{a}[0,1]\)
print(a)
\# print it.. wait, what?
A slice of an array is a "view" into a part of the original array. Thus, modifying it will change the original array as before. Be careful!

\section*{Numpy Array (6) - Slice Notation CONT}
```

a = np.array([[1,2,3], [4,5,6], [7,8,9]])

# integer index + slicing for lower dimensional array

row1 = a[1, :] \# Rank 1 view of the second row of a

# slicing for the same dimension

row2 = a[1:2, :] \# Rank 2 view of the second row of a
print(row1, row1.shape, row1.ndim)
print(row2, row2.shape, row2.ndim)
Make sure the dimension of your array is consistent with what you thought!

```

\section*{Numpy Array (7) - Element Access}
\# create a new array from which we will select elements a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) print(a)
\# an array of indices (for each row)
b = np.array([2, 1, 0, 1])
\# print element from each row of a using the indices in print(a[np.arange(4), b])
\# even we can modify the values
\(\mathrm{a}[\mathrm{np}\).arange(4), b] = a[np.arange(4), b] + 5

\section*{Numpy Array (8) - Element Access}
```

a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
idx = (a > 2) \# find element > 2
\# return booleans
print(idx)
print(a[idx]) \# return values greater than 2
\# with booleans

# in a single statement

print(a[a > 2])

```

\section*{Arrays (6) - Operations (1)}
\(x=n p . a r r a y([[1,2],[3,4]])\)
\(y=n p \cdot a r r a y([[5,6],[7,8]])\)
print (x+y)
print(np.add(x, y))
print (x-y)
print(np.subtract(x, y))
\# make sure this is element-wise product
print(x*y)
print(np.multiply(x, y))
\# make sure this is element-wise division
print(x/y)
print(np.divide(x, y))
print(np.sqrt(x))

\section*{Arrays (6) - operations (2)}
\(x=n p . a r r a y([[1,2],[3,4]])\)
\(y=n p . a r r a y([[5,6],[7,8]])\)
v = np.array([9,10])
w = np.array([11, 12])
\# Inner product of vectors
print(v.dot(w))
print(np.dot(v, w))
\# Matrix-vector product
print(x.dot(v))
print(np.dot(x, v))
\# Matrix-matrix product
print(x.dot(y))
print(np.dot(x, y))

Linear Algebra

\section*{Solution to linear system}
\[
A x=b
\]

A is \(n\) by \(n\) matrix
\(b\) is \(n \times 1\) vector
\(x\) is \(n \times 1\) vector to solve
- numerical solution to PDE (partial differential equation) ex) MODFLOW
- optimization ex) quadratic programming

\section*{MODFLOW - Numerical Modeling (1)}

In MODFLOW, water mass balance is enforced by summing the water fluxes \(Q_{i, j, k}\) across each side of the cell and internal source/sinks:
\(\sum Q_{i, j, k}=0\) (for steady state condition, i.e., no time-related term)


Figure 2: cell (i,j,k) configuration for mass balance equation (from Fig. 2-2 Harbaugh [2005])

\section*{MODFLOW - Numerical Modeling (2)}

With Darcy's law,
\[
q_{i, j-1 / 2, k}=K_{i, j-1 / 2, k} \Delta c_{i} \Delta v_{k} \frac{\left(\phi_{i, j-1, k}-\phi_{i, j, k}\right)}{\Delta r_{j-1 / 2}}
\]


Figure 3: Flow into cell i,j,k from cell i,j-1,k (from Fig. 2-3 Harbaugh [2005])

Combining with mass balance equation \(\sum Q_{i}=0\) (for steady stead) for every cell will lead to the system of linear equations
\[
\mathrm{A} \phi=\mathrm{f}
\]

\section*{numpy.linalg.inv}
\# from FVM with K=1, dr,dc,dz = 1
\# const. head \(=10 \mathrm{~m}\) at the left
\# no flow at the right
A = np.array([[1., 0., 0.],[-1., 2., -1.],[0., -1., 1.]]
f = np.array([[10],[0],[0]])
\# inverse of \(A\) to compute \(h=n p . \operatorname{dot}(i n v(A), f)\)
\# NEVER do this in practice! because
\# 1) it's expensive \(0\left(n^{\wedge} 3\right)\)
\# 2) poor numerical accuracy
invA = np.linalg.inv(A)
\(h=n p \cdot \operatorname{dot}(i n v A, f)\)
print(h)
print(invA)
print(np.dot(A,invA)) \# is this np.eye?
print(np.dot(A,h) - f) \# satisfy mass balance?
\# what do you expect?
\#

\section*{numpy.linalg.solve}
```


# so-called stiffness matrix

A = np.array([[1., 0., 0.],[-1., 2., -1.],[0., 1., -1.]]

# force/load vector

f = np.array([[10],[0],[0]])

# solution of Ah = f

h = np.linalg.solve(A,f)
print(h) \# what do you expect?
print(np.dot(A,h) - f) \# satisfy mass balance?

# how about constant head boundaries at both ends?

We will discuss advanced materials later (i.e., iterative approach as in PCG module of MODFLOW and eigen-decomposition)

```

\section*{Connection to Quadratic Function Optimization}
\[
f(x)=\frac{1}{2} x^{\top} A x-b x^{\top}
\]
- \(A x^{\star}-b=0\) for necessary condition to optimal (local) solution \(x^{\star}\) to \(\min / \max f(x)\)
- Quadratic function is related to some energy. In fact, nature acts so as to minimize energy
- If a physical system is in a stable state of equilibrium, then the energy in that state should be minimal
- Thus, no wonder linear algebra is related to optimization!```

