Introduction

Harry Lee January 8, 2018

CEE 696

- 1. Course Organization
- 2. Examples

Course Organization

- Optimization involves finding the "best" solution according to specific criteria
- Any engineering problem requires the optimization to make optimal use of resources with the least cost while minimizing failure and risk
- Examples in groundwater engineering:
 - maximize groundwater supply
 - minimize remediation cost
 - minimize the risk of aquifer deletion or saltwater intrusion

- Learn how to solve various optimization problems
- Learn how to use tools
 - Python programming
 - MODFLOW simulation with Python interface (flopy)
- Use <a>ETEX to submit homework, midterm, and project report

No formal ones, but

- undergraduate/graduate level class in linear algebra
- experience in script languages (e.g., MATLAB, R, PYTHON, Julia)

- Project: use optimization to do something cool!
- proposal, milestone, final paper
- Final presentation : Mon May 7 or Wed May 11

- + 4 \sim 5~HWs including Project proposal
- 2 Midterms for Project progress reports
- Project: use optimization to do something cool!
- proposal, milestone, final presentation, final paper

Lecture slides and suggested readings will be uploaded in https://www2.hawaii.edu/~jonghyun/classes/S18/ CEE696/index.html

https://www2.hawaii.edu/~jonghyun/classes/S18/ CEE696/schedule.html

- Python Distribution : Anaconda
- Python Editor : PyCharm
- ・ Document : 町EX(using Overleaf)

- 4-5 PM TR
- Holmes 336

• Enjoy the class project!

Examples

Groundwater Supply Maximization

Maximize groundwater supply while not too much aquifer drawdown.

Contaminant Removal

(b) Optimized bioremediation strategy

Minimize bioremediation cost while contaminant concentration below MCL at the compliance wells

Model Calibration

Figure 2: Hydraulic tomography [Hochstetler et al., 2016]

Minimize the difference between simulation model outputs and available observations

 $\begin{array}{ll} \underset{x}{\text{minimize}} & f_0(x)\\ \text{subject to} & f_i(x) \leq b_i, \ i=1,\ldots,m. \end{array}$

 $f_0(x)$ is called objective function

 $f_i(x)$ are constraints that the optimization problem should satisfy

- Continuous vs. Discrete Optimization
- Constrained vs. Unconstrained Optimization
- Single-objective vs. Multi-objective optimization
- Local vs. Global Optimization
 - convex optimization
 - \cdot meta-heuristic methods

- Python programming
- MODFLOW-Flopy modeling
- 1D optimization
- Local optimization
- Global optimization
 - convex optimization
 - stochastic search/evolutionary algorithm
- Multi-objective optimization
- Response matrix approach