Forecasting Evapotranspiration using RNN - LSTM

Joana Castillo Deep Learning : Fall 2019-2020 Civil & Environmental Engineering

Evapotranspiration

According to USGS:

"In general, evapotranspiration is the sum of evaporation and transpiration."

Some applications of Evapotranspiration:

Climate and cloud formation

(Shukla and Mintz, 1982; Rabin et al., 1990; Mölders and Raabe, 1996)

Agricultural management

(Allen et al., 1998; Farahani et al., 2007; Allen et al., 2011)

Water resources management

(Bastiaanssen et al., 2005; Anderson et al., 2012)

Detection of drought and heat waves

(Rind et al., 1990; Vicente-Serrano et al., 2010; Miralles et al., 2014; Otkin et al.,2010)

Source: www.usgs.gov

Penman Monteith Equation Allen et al., 1998 $ET_0 = \frac{0.408\Delta(R_n - G) + \gamma(900/(T + 273)U(e_s - e_a))}{\Delta + \gamma(1 + 0.34U)}$

*ET*_o = Reference Evapotranspiration (mm/day)

 Δ = Slope Vapor Pressure Curve (kPa°C⁻¹)

 R_n = Net radiation at the crop surface (MJ m⁻² day⁻¹)

G = Soil Heat Flux (MJ m⁻² day⁻¹)

 γ = Psychrometric Constant (kPa[°]C⁻¹)

T = Mean Daily Air Temperature at the reference height of 2 m (°C)

U = Wind Speed at 2 m height (m s⁻¹)

 e_s = Saturation Vapor Pressure (kPa)

 e_a = Actual Vapor Pressure (kPa)

RNN - LSTM

#define timesteps and features
ntimesteps = 30
nfeatures = 6

https://colab.research.google.com/drive/1B1vvZMdlLjEwsxzrNjrMx4viNctib6go

<pre>model = Sequential()</pre>
<pre>model.add(LSTM(units=30,return_sequences=True, input_shape=(ntimesteps,nfeatures))) model.add(Dropout(0.1)) model.add(LSTM(units=30, return_sequences=True)) model.add(Dropout(0.1)) model.add(LSTM(units=30, activation = 'sigmoid')) model.add(Dropout(0.1)) model.add(Dense(6)) model.compile(loss='mean_squared_error', optimizer='adam') model.summary()</pre>

Model: "sequential"

Output Shape	Param #
(None, 30, 30)	4440
(None, 30, 30)	0
(None, 30, 30)	7320
(None, 30, 30)	0
(None, 30)	7320
(None, 30)	0
(None, 6)	186
	(None, 30, 30) (None, 30, 30) (None, 30, 30) (None, 30, 30) (None, 30) (None, 30)

Total params: 19,266

Trainable params: 19,266

Non-trainable params: 0

[]	<pre>hist = model.fit(x_train,y_train,</pre>	epochs=100,	<pre>batch_size=32,</pre>	verbose=1)
----	--	-------------	---------------------------	------------

Epoch 98/100						
6686/6686 [======]	-	31s	5ms/sample	-	loss: (0.0123
Epoch 99/100						
6686/6686 [======]	-	31s	5ms/sample	-	loss: (0.0124
Epoch 100/100						
6686/6686 [=====]	-	31s	5ms/sample	-	loss: (0.0122

test_loss = model.evaluate(x_test, y_test)
print(test_loss)

.

1650/1650 [===========] - 2s 1ms/sample - loss: 0.0114 0.011365549738772891

Results

Solar

Mean

Conclusions and Recommendation

- RNN LSTM can be a effective program in predicting or forecasting the mean values of evapotranspiration and other time-series data.
- Improving the program via training it to detect the anomalies in data for more accurate results.
- Develop a more accurate RNN LSTM program in order to use for weather/rainfall, drought forecast, and for agricultural practices.

References

- Hanson, R. (2016, Dec. 9). Evapotranspiration and Droughts. Retrieved from https://geochange.er.usgs.gov/sw/changes/natural/et/
- Fisher, J. B., et al. (2017). The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, *Water Resour. Res.*, 53, 2618-2626, doi:10.1002/2016WR020175.
- U.S. Geological Survey (n.d.). Evapotranspiration and the Water Cycle. Retrieved from https://www.usgs.gov/special-topic/water-scienceschool/science/evapotranspiration-and-water-cycle?qtscience_center_objects=0#qt-science_center_objects