DEEP LEARNING SOLUTION FOR STRENGTH PREDICTION OF STEEL CHS X-JOINTS

Xi Song

xisong at hawaii dot edu

CEE 696

Dec 19, 2019

INTRODUCTION

• Steel CHS (Circular Hollow Section) X-Joints:

Fig. 2. HSA800 test specimens: a) $\beta = 0.75$, $\theta = 90^{\circ}$, b) $\beta = 0.62$, $\theta = 90^{\circ}$, c) $\beta = 0.62$, $\theta = 60^{\circ}$, d) $\beta = 0.62$, $\theta = 45^{\circ}$

INTRODUCTION

• Strength prediction by Numerical Finite Element (FE) model:

Fig. 7. Typical FE analysis meshes: (a) overall view; (b) weldment modeling; (c) meshes through thickness

Problem: FE analysis requires high computational resources

DATA DESCRIPTION

• CHS X-joint configuration:

• Learning features (Input parameters):

1.Chord Diameter d₀ (mm)
2.Yield Stress (Fy)
3.Ultimate Stress (Fu)
4.Beta (brace-to-chord diameter ratio)
5.2-Gamma (chord thickness-to-diameter ratio)
6.CSL (chord stress level)
7.Tau (brace-to-chord thickness ratio)

8.Alpha (chord radius-to-length ratio)

• Prediction (Output):

Strength (ksi)

DATA DESCRIPTION

• Learning examples from FE model:

	Fy	Fu		2-				Ultimate strength
Diameter	(MPa)	(MPa)	Beta	Gamma	CSL	Tau	Alpha	(kN)
474.2	382	563	0.77204	44.526	0	0.8779	11.388	739.18993
101.6	318	437	0.47835	34.209	0	0.7744	3.937	20.8719
101.6	318	437	0.47835	34.209	0	0.7744	5.9055	28.3136
101.6	318	437	0.47835	34.209	0	0.7744	7.874	31.059928
101.6	318	437	0.47835	34.209	0	0.7744	9.8425	31.516691
101.6	318	437	0.47835	34.209	0	0.7744	11.811	32.338692
101.6	318	437	0.47835	34.209	0	0.7744	15.748	34.067082
101.6	318	437	0.47835	34.209	0	0.7744	19.685	34.872545
101.6	318	437	0.47835	34.209	0	0.7744	23.622	35.047904
101.6	400	462	0.21358	32.152	0	0.7278	15.748	27.87627

• Testing data from physical model:

Diameter	Fy (MPa)	Fu (MPa)	Beta	2-Gamma	CSL	Tau	Alpha	Ultimate strength (kN)
400	324	518	0.75	16	0	0.6	15	3725
650	324	518	0.615	26	0	1	7.7	2640
650	478	586	0.615	26	0	1	7.7	3759
650	798	914	0.615	26	0	1	7.7	5612

Total 3710 simulation results with different configurations of X-joint for model learning

4 experimental data for testing

IMPLEMENTATION & RESULT

Model: "sequential_2"

- Deep Learning Numerical Regression
- Input Normalization
- I0% as validation set
- Network structure

Layer (type)	Output Shape	Param #
flatten_2 (Flatten)	(None, 8)	0
dense_8 (Dense)	(None, 128)	1152
dense_9 (Dense)	(None, 64)	8256
dense_10 (Dense)	(None, 64)	4160
dense_11 (Dense)	(None, 1)	65
Total params: 13,633 Trainable params: 13,633 Non-trainable params: 0		

model.compile(optimizer='Nadam',loss='mean_squared_error',metrics=['accuracy'])

hist = model.fit(x_train, y_train,epochs=500, batch_size=64, validation_split=0.1,verbose = 1)

IMPLEMENTATION & RESULT

		Fv	Fu						Ultimate strength
Diam	neter	(MPa)	(MPa)	Beta	2-Gamma	CSL	Tau	Alpha	(kN)
	400	324	518	0.75	16	0	0.6	15	3725
	650	324	518	0.615	26	0	1	7.7	2640
	650	478	586	0.615	26	0	1	7.7	3759
	650	798	914	0.615	26	0	1	7.7	5612

Notice that the first prediction data has some discrepancy.

IMPLEMENTATION & RESULT

Increase iteration:

hist = model.fit(x_train, y_train, epochs=1000, batch_size=100, validation_split=0.1,verbose = 0)

FUTURE WORK

• Utilize transfer learning to improve the model performance

REFERENCE

- Lee, Cheol-Ho, Kim, Seon-Hu, Chung, Dong-Hyun, Kim, Dae-Kyung, and Kim, Jin-Won. "Experimental and Numerical Study of Cold-Formed High-Strength Steel CHS X-Joints." *Journal of Structural Engineering* 143, no. 8 (August 1, 2017).
- Lee, Cheol-Ho, and Kim, Seon-Hu. "Structural Performance of CHS X-joints Fabricated from High-strength Steel." Steel Construction 11, no. 4 (November 2018): 278–285.