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Abstract

This paper identifies the market responses to rainfall and fire risks in Hawaiian real estate by

exploiting spatial variations in precipitation patterns and fire risk exposure. Using transaction-

level housing data from 2000-2019, we document three key findings. First, rainfall shocks depress

property values, highlighting the disruptive impact of extreme precipitation. Second, wildfire

risk also reduces property values, underscoring the market’s sensitivity to fire-related hazards.

Third, the negative impact of rainfall shocks is moderated in fire-prone areas, suggesting that

markets value the fire-mitigating benefits of increased rainfall. Our findings contribute to the

understanding of how compound climate risks are capitalized in real estate markets and highlight

the importance of considering such risk interactions in climate adaptation policy.
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1 Introduction

Climate change is fundamentally altering global weather patterns, with profound implications for various

sectors of the economy. Recent assessments by the Intergovernmental Panel on Climate Change (IPCC) indi-

cate that each of the last three decades has been progressively warmer than any preceding decade since 1850,

contributing to more frequent and intense extreme weather events (Change, 2007). In the United States, the En-

vironmental Protection Agency reports that regions experiencing extreme single-day precipitation events have

increased by approximately half a percentage point per decade between 1910 and 2020 (U.S. Environmental

Protection Agency, 2021). These climatic shifts are increasingly influencing real estate decisions, as potential

homebuyers express growing hesitation about purchasing properties in areas prone to climate-related risks

(Redfin, 2022)

This study investigates the impact of rainfall1 shocks on Hawaii’s real estate market, incorporating the

effects of heterogeneous fire risk. Hawaii presents a unique setting for this analysis due to its diverse micro-

climates resulting from the islands’ steep topography and the complex interplay between terrain, trade winds,

and land effects (Sen Roy and Balling, 2004; Giambelluca et al., 2013). The islands’ mountains obstruct the pr

evailing northeast trade winds, leading to abundant precipitation on windward slopes and creating dry rain

shadows in leeward areas (Figure 1).

Figure 1: Average Daily Rainfall 1990-2019

1For this study rainfall and precipitation are analogous because inhabited areas in Hawaii only experience liquid precip-
itation.
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Rainfall patterns in Hawaii have shifted in recent decades with historically dry regions becoming drier

while wet regions have grown wetter (Chen and Chu, 2014; Elison Timm et al., 2013). The state has also

experienced more extreme precipitation events at both ends of the distribution. For example, in 2018, Kauai’s

north shore received 1262 mm of rain in 24 hours (nearly half its annual rainfall) causing catastrophic flooding

that isolated communities for months. Changes in precipitation patterns have led to increased water shortages

in dry areas while amplifying risks of runoff, erosion, and flooding in wet regions (State of Hawaii Climate

Change Portal, 2024).

These dynamics are further complicated by their interactions with fire risk. The August 2023 Lahaina

wildfire underscores Hawaii’s susceptibility to destructive fires, revealing how precipitation may create coun-

tervailing effects across fire-prone zones. As Figure 2 illustrates, some high-risk areas have grown wetter while

others have become drier, potentially leading to mixed outcomes. Drought conditions increase the availability

of combustible fuel, while excessive precipitation promotes vegetation growth that can later serve as fire fuel

(Westerling et al., 2006; Lima et al., 2018; Puxley et al., 2024; Volkova et al., 2019; Hernández Ayala et al., 2021).

Conversely, wet conditions can mitigate fire risk by reducing ignition probability by maintaining soil mois-

ture,(Abatzoglou and Williams, 2016), and limiting the accumulation of dry fine fuels (Van Blerk et al., 2021).

This effect has been documented in tropical ecosystems (Spracklen et al., 2012) as well as in urban and forested

areas (Sakai et al., 2004). Our study offers the first empirical evidence of how these nuanced precipitation-

fire risk interactions are reflected in property values. By examining the spatial heterogeneity of precipitation

changes and their implications for fire risk, we highlight the complex ways in which climate dynamics shape

economic outcomes in the housing market.

We employ two complementary estimation approaches to identify the response of consumers to rainfall

variability and fire risk. First, we implement a hedonic pricing model that controls for a wide array of observ-

able differences across properties and neighborhoods using detailed information on housing characteristics.

Second, we estimate a repeat sales model that introduces property fixed effects, accounting for both observed

and unobserved time-invariant differences across properties. Our findings indicate that increases in rainfall

consistently reduce property values; however, this negative effect is substantially moderated in areas with high

fire risk, suggesting that markets value rainfall’s fire mitigation benefits. A one standard deviation increase in

cumulative rainfall index reduces prices by 1.9 percent in low-fire-risk areas but only 0.8 percent in high-risk

areas. This pattern holds across multiple rainfall measures: each additional day of extreme rainfall (above the

99th percentile) reduces values by 0.8 percent in low-risk areas but just 0.2 percent in high-risk areas. While

wet conditions show heterogeneous effects across fire risk zones, extremely dry conditions (below the 1st per-

centile) uniformly reduce property values by 0.5 percent per day regardless of fire risk exposure but moderate

dry spells have no impact. These findings persist in repeat sales specifications and when using a dynamic

measure of actual wildfire exposure instead of static risk designations.

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature, focusing on
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Figure 2: Percentage change in daily mean rainfall between 1990–1999 and 2010–2019. Black
polygons indicate at fire-risk communities. (Source: Hawaii Climate Data Portal).

the impact of climate change on the real estate market and the application of hedonic pricing models. Section

3 describes the data and Section 4 outlines the empirical approach. Section 5 presents the main findings, while

Section 7 discusses the implications of our results and suggests directions for future research.

2 Literature Review

Our study contributes to three distinct but interconnected strands of literature: the economic impacts of climate

change on real estate markets, the relationship between environmental amenities and property values, and the

methodological approaches to measuring climate-related price effects in housing markets.

A growing body of research documents how climate risks are increasingly capitalized into real estate

values. Recent work has established that markets discount properties exposed to sea level rise (SLR) nationally,

with the magnitude varying based on local adaptation capacity and risk awareness (Keys and Mulder, 2020;

Bernstein et al., 2019; Fu et al., 2016; Tyndall, 2023; Tarui et al., 2023; Tedesco et al., 2019). Similar pricing

patterns have been observed for other climate hazards. Wildfires have been linked to increased mortgage

delinquency (Issler et al., 2020) and reduced residential property values (Dong, 2024), hurricanes and extreme

heat to declines in commercial real estate returns (Addoum et al., 2024; Cvijanovic and Van de Minne, 2024).

This extensive body of work highlights the responsiveness of real estate markets to climate risks, though the

channels and magnitudes remain subjects of ongoing debate.
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The relationship between precipitation and property values presents a particularly complex case due to

rainfall’s dual role as both an amenity and a disamenity. Early hedonic studies found a negative impact of rain-

fall on property values (Blomquist et al., 1988; Clark and Cosgrove, 1990). Torrential rainfall and flooding risk

are associated with lower housing prices (Bin and Landry, 2013) and tighter lending standards (Blickle et al.,

2024; Avril et al., 2023). Overall, households generally prefer less precipitation and more seasonal variation

(Englin, 1996).

Recent work reveals important nuances in this precipitation property value relationship. Goodwin et al.

(2021) show that increased rainfall in Mexico City reduces particulate matter pollution, indirectly boosting

home prices through improved air quality. Mueller et al. (2018) document how post-wildfire flooding risks

in Arizona create compound effects on property values, highlighting the interplay between different climate

hazards. Lamas Rodríguez et al. (2023) find a negative correlation between ecological deterioration caused by

excessive rainfall and house prices in Mar Menor, Spain. Choi and Lee (2016) look at the physical amount of

rainfall as one cause of the flood and find that both the average annual rainfall and rain intensity (amount of

rainfall per rainy day) negatively affect property prices. Overall, this strand of literature suggests that rainfall’s

impact on property values is negative but may vary based on its interaction with other environmental factors.

Our study advances this literature by examining how fire risk mediates the relationship between precipi-

tation and property values. While previous research has studied these factors separately, we provide the first

evidence of their interaction in real estate markets. This approach builds on work showing that environmen-

tal amenities can have heterogeneous effects based on local conditions (Albouy et al., 2016; Bakkensen and

Barrage, 2017; Gibbons et al., 2014).

Methodologically, our work contributes to a debate about the appropriate empirical strategies for iden-

tifying climate-related price effects. The traditional hedonic approach (Rosen, 1974) has been widely used to

estimate implicit prices of environmental amenities but faces challenges from omitted variables and the spatial

correlation of climate features. To address this, first, we include a host of controls in our regression framework

including basic property characteristics (square footage, rooms, property age, home type, slope etc.), coastal

proximity controls as properties close to the coast command a premium (Tarui et al., 2023; Tyndall, 2023; Jin

et al., 2015), and elevation controls as high elevation is viewed as an amenity due to superior views (Gordon

et al., 2013) or as insurance against risks such as SLR (Tyndall, 2023). Second, we utilize a repeat sales method

to address omitted variable concerns (Palmquist, 2005). Our implementation of both approaches demonstrates

how they can provide complementary evidence on climate-property value relationships.

Hawaii provides an ideal setting for this analysis due to its diverse microclimates and varying exposure

to fire risk. Following Englin’s (1996) caution against national-level precipitation studies, we focus on a region

where spatially granular rainfall measurement is available and fire risk varies substantially in small geographic

areas. To measure precipitation, we construct z-score based indices, which have been widely used in climate

impact studies due to their simplicity, reliability in assessing climate vulnerability (Nam and Kim, 2013; Pauline
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et al., 2021; Shahabfar et al., 2012; Nourani et al., 2021; Zaveri et al., 2023). We also consider a suite of alternative

measures such as fractional deviation of monthly rainfall from its average historical level (Duflo and Pande,

2007; Sarsons, 2015), rainfall shocks (Jayachandran, 2006; Kaur, 2019; Sarsons, 2015; Shah and Steinberg, 2017),

and counts of extreme rainy and dry days, identified by a percentile threshold (Suppiah and Hennessy, 1998;

Endo et al., 2005; Méndez-Lázaro et al., 2014).

This paper contributes to our understanding of how climate risks affect real estate markets. We provide

novel evidence on the interaction between precipitation patterns and fire risk in determining property val-

ues, showing how one environmental factor can moderate the impact of another. Our analysis also highlights

the critical importance of local environmental context when examining how climate affects economic out-

comes. Finally, our methodological approach, which employs both repeat sales and hedonic pricing methods

as complementary tools, offers a template for future research on the intricate interactions between climate and

property valuation.

3 Data

This study employs real estate transaction data and key property characteristics from Black Knight, a financial

services firm. Our analysis is underpinned by property assessment and deed data. The deed data provides

critical transactional information, including the exact date of the transaction and the classification of the prop-

erty as either residential or commercial. The assessment data offers insights into property features such as

the number of rooms, living area, age of the property, and type (e.g., single-family dwelling vs. multi-family

dwelling). These two datasets are merged using the Assessor Parcel Number (APN), a unique identifier for

each property. This study focuses exclusively on residential properties. We used transactions between 2000 and

2019 and excluded transactions priced below $50,000 or above $50,000,000 to retain arm’s length transactions

and remove outlier influence.

In the subsequent phase, we integrated environmental data, starting with publicly accessible daily rainfall

rasters from the Hawaii Climate Data Portal. This product is gridded at a high resolution of 250 meters,

allowing us to use it effectively with detailed micro-transaction data. Additionally, we procured GIS shapefiles

from the Hawaii Statewide GIS Program’s Geospatial Data Portal, which offered detailed spatial geometries

of tax parcels and delineations of coastlines across the principal Hawaiian islands. These rainfall rasters were

overlaid onto our parcel geometries to generate a spatial map. The projection chosen for this analytical exercise

was the WGS-1984, deemed most suitable for our geographic study area. For each day from January 1, 1990,

through December 31, 2019, we assigned to each parcel the daily precipitation value as its value at the parcel’s

geographical center. This procedure was then replicated with additional shapefiles, augmenting the dataset

with other critical spatial attributes such as elevation and coastal distance. We mapped elevation rasters onto

parcels to calculate the average gradient of the parcel (slope). Utilizing APN as the unifying property identifier,

we merge this augmented dataset with Black Knight data.
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Figure 3: Average Monthly Rainfall (mm) from 1990 to 2019

Figure 4: Total Annual Rainfall (mm)

Figure 3 illustrates average monthly rainfall patterns for the state and for properties in our sample from

1990–2019. While the sample properties exhibit higher average rainfall overall, the pattern closely aligns with

statewide seasonal fluctuations. Rainfall in Hawaii is characterized by distinct wet (November–March) and

dry (April–October) seasons. During wet season, trade winds bring precipitation primarily to windward ar-

eas, supplemented by winter storms that can produce rainfall across the islands. In dry season, precipitation

declines significantly, especially in leeward regions, although windward areas continue to receive some rain-
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fall driven by trade winds. The long-term trend in total annual rainfall remained relatively stable from 1990

to 2019 (Figure 4, dashed red line). However, properties in our sample experienced more days with rainfall

exceeding 75mm 2 and longer stretches of consecutive extreme rainfall days in the post-2000 period than in

the previous years (Figure 5). Five-year moving averages suggest this shift represents a structural change in

precipitation patterns rather than isolated weather events, particularly evident in the mid-2000s when both

metrics mostly exceeded their full-sample means.

Figure 5: Average Extreme Precipitation Days by Property

2We follow the common practice in climate studies of using 75mm as a cutoff for extreme rainfall. This rule of thumb
threshold has been adopted in regional studies (Beguería and Vicente-Serrano, 2006) and appears in Hawaiian climate
assessments and academic work (Chu et al., 2009; Kunkel et al., 2022).
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We obtain fire risk data from the Hawaii Statewide GIS Program’s Communities at Risk (CAR) from the

Wildland Fires layer. Initially compiled in 2006-2007 by the Department of Land and Natural Resources, this

dataset provides risk ratings of High, Medium, or Low for major populated areas across the Hawaiian islands.

The fire risk assessment follows guidelines developed by the National Association of State Foresters in June

2003, created in response to the National Fire Plan and the Healthy Forests Restoration Act (HFRA). These

guidelines outline a process for identifying and prioritizing communities at risk from wildland fires, consid-

ering factors such as fire occurrence, hazard conditions, values protected, and protection capabilities. In our

analysis, we designate a community at risk of fire if rated as either high or medium risk. Despite the data be-

ing collected in 2006-2007, the Hawaii Statewide GIS Program confirmed in October 2022 that these boundaries

and risk ratings remain valid and unchanged over time.

A natural question arises: are property buyers in Hawaii aware of the fire risk? While there are no legal

requirements for fire risk disclosures in the state, the issue is prominent. With approximately 0.5% of Hawaii’s

total land area burning annually, a rate comparable to or even exceeding that of any other U.S. state - fire risk is

arguably a salient concern for buyers. Figure 6 shows the total area burned statewide across the years. Further-

more, evidence suggests homebuyers respond to publicly available wildfire risk information. Donovan et al.

(2007) found that after Colorado Springs Fire Department’s risk ratings became publicly accessible, properties

in high-risk areas saw their previous amenity premiums offset by increased risk awareness among buyers.

Figure 6: Annual Area Burned Statewide

In the appendix, we complement our analysis with a real-time measure of fire exposure based on ac-

tual wildfire occurrences rather than designated risk zones. We construct a dynamic index that captures the

spatiotemporal variation in fire risk by incorporating the size, proximity, and frequency of fires. The results
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Table 1: Summary Statistics (2000-2019)

Panel A: Full Sample

Mean Median Sd Min. Max.

Sales Price 495,513 356,773 698,757 50,000 46,117,500
Fire Risk 0.59 1 0.49 0 1
House Age 26 26 18 0 166
Square Footage (1000) 1.4 1.1 0.82 0.1 21
# Bedrooms 2.7 3 1.2 1 18
Slope 3.6 2.3 4 0 47
Elevation (m) 98 25 172 0 1584
Coastal Distance (m) 2,659 1,456 3,347 0.47 25,108
Single Family 0.41 0 0.49 0 1
Six Month Daily Avg (mm) 2.6 1.9 2.4 0.02 35

Panel B: Repeat Sales Sample

Sales Price 474,870 345,000 644,470 50000 46,117,500
Fire Risk 0.62 1.00 0.49 0 1.00
House Age 25 25 17 0 166
Square Footage (1000s) 1.3 1.1 0.80 0.1 17
# Bedrooms 2.6 3 1.2 1 15
Slope 3.6 2.3 4 0 42
Elevation (m) 97 24 171 0 1469
Coastal Distance (m) 2,632 1,410 3,334 0.47 24,614
Single Family 0.4 0 0.49 0 1
Six Month Daily Avg (mm) 2.57 1.85 2.33 0.02 35.14

Note: Descriptive statistics for all transactions. Fire Risk is a binary indicator. Zero house age indicates the
property was sold the same year it was built. All prices are nominal. N = 268,406 for the full sample and N =
180,044 for the repeat sales sample.

from this time-varying measure reinforce our main findings on the relationship between wildfire exposure and

property values.

Our final dataset consists of 268,406 observations covering 158,405 unique properties in the four coun-

ties of Maui, Kauai, Honolulu, and Hawaii. Restricting this to properties that sold more than once, 33% of

observations drop out. Table 1 provides descriptive statistics for the full sample and repeat sales subsample,

highlighting key property characteristics and differences across the datasets. The nominal median sales price

for the full sample was $356,773, while the repeat sales subsample had a slightly lower median of $345,000.

Properties in the full sample were, on average, 26 years old, with a mean size of 1,400 square feet, and 59% were

located in high fire risk areas. The average six-month daily rainfall was 2.6 mm across both samples. Table 2

further disaggregates the full sample by fire risk, illustrating notable differences. Properties in high-fire-risk

areas were generally newer (mean age of 22 years) and larger (1,400 square feet on average) compared to low-

fire-risk areas (mean age of 31 years, 1,300 square feet). Average six-month daily rainfall was higher in low

fire-risk areas (3.2 mm) than in high fire-risk areas (2.2 mm). These differences underscore the geographic and
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environmental variation in the dataset, enabling an in-depth analysis of rainfall impacts on property values

across fire risk profiles.

Table 2: Comprehensive Sample Summary Statistics split by Fire Risk (2000-2019)

Low Fire Risk High Fire Risk

Mean Median Std. dev. Min. Max. Mean Median Std. dev. Min. Max.

Sales Price 505,352 365,000 724,534 50,000 46,117,500 488,610 350,000 680,005 50,000 41,775,000
House Age 31 31 18 0 162 22 21 16 0 166
Square Footage (1000) 1.3 1.1 0.87 0 21 1.4 1.2 0.79 0 14
# Bedrooms 2.5 2 1.3 1 18 2.7 3 1.1 1 16
Slope 3.4 1.9 4.2 0 42 3.8 2.6 3.9 0 47
Elevation (m) 101 18 201 0 1,584 95 30 148 0 1,401
Coastal Distance (m) 2,652 1,486 3,629 0.49 25,108 2,663 1,439 3,134 0.47 22,887
Single Family 0.38 0 0.49 0 1 0.42 0 0.49 0 1
Six Month Daily Avg (mm) 3.2 2.2 2.8 0.031 35 2.2 1.7 1.9 0.016 16

Note: Descriptive statistics for all transactions categorized by high fire risk (N = 110,676) and low fire risk (N
= 157,730). All prices are nominal.

Figure 7 shows the distribution of sales prices which has a rightward skew. In our regression specifi-

cations, we use logarithm-transformed nominal sales price as our dependent variable, which approximately

follows a normal distribution. Figure 8 shows that median home prices in Hawaii have continued to appreciate

since 2000, reaching a high in 2007, right around the time of the global financial crisis. They then depreciated

until 2011 but have since been appreciating steadily, reaching new highs near the end of our sample. Impor-

tantly, Figure 8 also plots the median sales price trend of the repeated sales sub-sample, which only includes

properties that sold more than once. While repeat sales address the issue of unobserved differences in housing

characteristics, the method may be less precise than hedonic models due to smaller sample sizes and potential

selection bias issues (Gatzlaff and Haurin, 1997; Haan and Diewert, 2011; Case and Quigley, 1991). However, if

the quality of homes is similar, arbitrage will force prices for the repeat sample to grow at the same rate as the

prices for the full sample (Clapp et al., 1991), which is what we observe in Figure 8. The trends of the repeated

sales and the full sample of sales are very closely related, with a correlation coefficient of 0.99. Conducting a

Kolmogorov–Smirnov (KS) test on the density of log sales price of the repeat sale and full sample, we fail to

reject the null hypothesis that there is no difference between the two distributions (D = 0.05, p = 0.69)3. Overall,

the repeat sales sample is representative of the complete set of home sales.

3The K-S test compares the empirical distribution function of one sample to another sample. Comparing the two dis-
tribution functions generates a D value, which represents the maximum distance between two curves, as well as a corre-
sponding p-value.
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Figure 7: Nominal Sales Price Distributions 2000-2019
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Figure 8: State Level Trend in Median Sales Price by Sample Type
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4 Precipitation Measures

To quantify the relationship between precipitation patterns and property prices, we utilize various indices:

Cumulative Rain Index (CRI), Fractional Deviation (FD), Shock Index (SI), Rain Event Count (REC), and Dry

Event Count (DEC). Each index is computed for individual property transactions. For notational simplicity,

we suppress the time subscript throughout our discussion of these indices, though each measure is calculated

specific to a property’s transaction date.

4.1 Cumulative Rain Index (CRI)

Z-score-based indices, or standardized precipitation anomalies, are widely used in the literature to quantify

precipitation variability (Zaveri et al., 2023). Typically, these involve subtracting location-specific rainfall from

its long-term mean and dividing by the standard deviation across the entire sample. As Zaveri et al. (2023)

states, rainfall variability measured in this manner reflects random draws from the climate distribution. The

resulting z-score represents the standard deviations from the long-run mean for a specific location and time.

Our Cumulative Rain Index (CRI) extends this concept with some modifications. We define lookback periods

(90, 180, or 365 days) before each property’s transaction date. We compare this lookback period with a mean

for the same calendar days during the prior 10 years, controlling for both location-specific and seasonal factors.

Calculating the long-term mean based on 10 years of daily observational data preceding our lookback pe-

riod offers several advantages. First, it captures recent weather trends, as the baseline adjusts with each prop-

erty’s transaction date, allowing the index to adapt to evolving precipitation patterns potentially influenced by

climate change. Second, according to Gourley (2021), recent weather conditions have a more statistically sig-

nificant impact on house prices than long-term averages. Third, the approach flexibly adjusts for the volatility

of weather, i.e. whether a property is in a region with a stable climate or one experiencing rapid changes, the

index will reflect the relevant recent conditions relative to the norm. Our index is calculated as follows:

• For each property i, we consider N days (N = 90, 180, 365) of daily rainfall data immediately preceding

the transaction date. This is our lookback period.

• For property i with transaction date t, we identify the same N calendar days in each year during the

ten-year base period preceding the lookback period. For example, assuming N = 180 and the property

sold on January 1, 2010, the lookback period would be July 5, 2009, to January 1, 2010 (180 days). The

base period would cover July 5 to January 1 for each year from 1999 to 2008. This approach ensures

consistency in seasonality between the lookback and base periods.

• The CRI for property i is the difference between the cumulative rainfall in the lookback period Rlookbacki

and the mean of the cumulative rainfalls in each year of the base period µbasei , scaled by the standard

deviation of the cumulative rainfall per year in the base period σ∗
basei

. Note that the base period means
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and standard deviations are computed from ten cumulative rainfall observations (one for each year in

the base period).

CRIi =
Rlookbacki − µbasei

σbasei

(1)

For robustness, we also analyze the index constructed using a fixed 1990-1999 base period to examine the

impact of long-term climate change rather than short-term weather variations.

4.2 Fractional Deviation (FD)

We use a commonly used measure of rainfall shocks constructed to account for seasonality, i.e., the fractional

deviation of monthly rainfall from its average level (Sarsons, 2015; Duflo and Pande, 2007). The average is

calculated for each month using data from 1990 to 1999. This fixed base period allows FD to account for long-

term shifts in rainfall patterns, making it a potential proxy for climate change over the years. We define a shock

for each of the 12 months preceding the transaction date and sum them to obtain the overall rainfall shock for

each property. Specifically:

• For property i in month m, calculate the historical average across BaseYears = {1990, 1991, . . . , 1999}.

This gives us twelve average values for January through December.

R̄i,m =
1
10 ∑

y∈BaseYears
Ri,m,y (2)

• For each of the twelve months m preceding the transaction, calculate the fractional deviation from the

historical average of that month.

δi,m =
Ri,m − R̄i,m

R̄i,m
(3)

• Sum the deviations for each of the 12 months preceding the transaction date and divide by twelve to

compute the average fractional deviation for property i:

FDi =
1

12

12

∑
m=1

δi,m (4)

4.3 Shock Index (SI)

We construct a seasonally adjusted measure of rainfall shocks based on the approach used in Sarsons (2015),

Kaur (2019), and Jayachandran (2006).

• For each property i and each month m (January through December), we compute the 80th and 20th per-

centile total rainfall values, denoted as P80i,m and P20i,m, respectively. These percentiles are computed
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using total rainfall data across the BaseYears = {1990, 1991, . . . , 1999}, providing ten data points for each

month.

• For each of the twelve months preceding the transaction month, we look at the total monthly rainfall

Ri,m and define a discrete shock Si,m to represent a positive, negative, or no shock.

Si,m =


+1, if Ri,m > P80i,m

−1, if Ri,m < P20i,m

0, if P20i,m ≤ Ri,m ≤ P80i,m

(5)

• Calculate the average of the monthly shocks over the twelve months preceding the transaction date to

obtain the rainfall shock measure for property i:

Shocki =
1
12

12

∑
m=1

Si,m (6)

4.4 Rain Event Count (REC) and Dry Event Count (DEC)

To capture the frequency of unusual rainfall events and their potential impact on property prices, we employ

metrics called Rain Event Count (REC) and Dry Event Count (DEC). These measures are designed to quantify

how often precipitation deviates significantly from historical norms, providing a measure of extreme weather

occurrences. REC focuses on unusually wet periods, calculated at the 90th, 95th, and 99th percentiles of histor-

ical rainfall. Conversely, DEC captures unusually dry periods, focusing on the 1st, 5th, and 10th percentiles.

By examining both extremes, we aim to provide a comprehensive picture of precipitation anomalies that could

influence property valuations. This approach allows us to capture not just the intensity but also the frequency

of extreme weather events, which may have non-linear effects on property markets. The indices are calculated

as follows:

• For each property transaction, we consider 365 days (12 months) of daily rainfall data immediately

preceding the transaction date. This is our lookback period.

• For the same property, we use historical data over the past 10 years to calculate the respective percentile

thresholds.

• For REC we count the number of days in the lookback period that exceed these thresholds.

• For DEC we count the number of days in the lookback period that are below these thresholds.

4.5 Precipitation Summary Statistics

Panel A of Table 3 presents summary statistics for our rainfall measures, revealing substantial variations in

precipitation patterns across our comprehensive sample. These measures are designed to capture different
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aspects of rainfall shocks, from cumulative deviations to extreme events. The Cumulative Rain Index (CRI365),

which measures the standardized deviation of rainfall over a 365-day lookback period, shows a mean of 0.13

and a median of 0.07. This slight positive skew, coupled with a standard deviation of 1.30 and a range from

-5.62 to 6.66, indicates that while on average, properties experienced slightly wetter conditions than historical

norms, there was considerable variability, with some areas experiencing significantly drier or wetter condi-

tions. The Fractional Deviation (FD) measure captures the average cumulative rainfall anomalies over the 12

months preceding each property transaction. With a mean of 0.1 and a median of 0.01, it suggests that, on

average, properties experienced slightly higher cumulative rainfall in the year leading up to the transaction

compared to their historical norms. Specifically, the mean indicates that over the year leading up to the trans-

action, the property experienced a consistent pattern of increased rainfall, averaging 10% more than what is

typically expected based on historical data. The median of 0.01 implies that half of the observations had an

average fractional deviation within 1% of their historical average over the 12 months. The standard deviation

of 0.43 and the wide range from -0.85 to 3.24 highlight significant variability in rainfall patterns across different

properties and periods. In extreme cases, some areas experienced only 25% of their normal cumulative rainfall

(severe drought conditions), while others received more than three times their typical amount (extreme excess

rainfall) in the year preceding a transaction.

The Shock Index (SI), which discretizes monthly rainfall into positive, negative, or no shocks based on

historical 80th and 20th percentiles, provides additional insight into the frequency and direction of rainfall

anomalies. With a mean of 0.05 and a median of 0.00, it suggests a slight tendency towards positive rainfall

shocks in our sample period. The full range of -1.00 to 1.00 indicates that some properties experienced con-

sistently dry or consistently wet conditions relative to their historical norms over the 12 months preceding the

transaction.

We measure extreme rainfall frequency using Rain Event Counts (REC) above the 90th, 95th, and 99th per-

centiles over a 365-day period. On average, properties have 39.40 days (median 39) above the 90th percentile,

20.64 days (median 20) above the 95th, and 4.47 days (median 4) above the 99th, closely matching theoretical

expectations of 37, 18, and 4 days, respectively. Maximum values of 119, 64, and 29 days reflect substantial

spatial variation. Dry Event Counts (DEC) are lower: 33.5 days (median 36) below the 10th percentile and 0.40

days (median 0) below the 1st percentile. Notably, properties experience more than eleven times as many days

above the 99th percentile than below the 1st, indicating a skew toward wet extremes.

Panel B demonstrates similar patterns, indicating consistency in rainfall measures across the repeat sales

subsample. Overall, the variability in precipitation patterns, from sustained shifts in average rainfall to fluctu-

ations in extreme wet and dry events, offers a robust foundation for analyzing the impact of changing rainfall

regimes on property values across Hawaii’s diverse micro-climates.
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Table 3: Rainfall Measure Summary Statistics

Panel A: Full Sample

Mean Median Sd Min Max
CRI365 0.13 0.07 1.30 -5.62 6.66
FD 0.09 0.01 0.43 -0.85 3.24
SI 0.05 0.01 0.49 -1.00 1.00
REC>90% 39.40 39.00 13.09 4.00 119.00
REC>95% 20.64 20.00 8.62 0.00 64.00
REC>99% 4.47 4.00 3.21 0.00 29.00
DEC<10% 33.48 36.00 20.32 0.00 124.00
DEC<5% 13.50 14.00 12.57 0.00 83.00
DEC<1% 0.40 0.00 1.69 0.00 23.00

Panel B: Repeat Sales Sample

CRI365 0.15 0.09 1.31 -5.41 6.66
FD 0.10 0.01 0.44 -0.85 3.24
SI 0.06 0.01 0.49 -1.00 1.00
REC>90% 39.59 39.00 13.18 4.00 119.00
REC>95% 20.76 20.00 8.69 0.00 64.00
REC>99% 4.49 4.00 3.26 0.00 29.00
DEC<10% 32.87 36.00 20.42 0.00 123.00
DEC<5% 13.21 13.00 12.50 0.00 69.00
DEC<1% 0.38 0.00 1.61 0.00 22.00

Note: Rainfall measure descriptive statistics based on all transactions (N = 268,406) and repeat sales transactions (N =
180,044). The Cumulative Rain Index (CRI) is calculated over a lookback period of 365 days before the transaction date,
reflecting cumulative rainfall deviations. Fractional Deviation (FD) captures rainfall shocks using monthly deviations
from a historical average for each of the 12 months preceding the transaction date. The Shock Index (SI) is based on
discrete monthly rainfall shocks, where rainfall in each of the 12 months deviates beyond the 80th or below the 20th
percentiles of historical values. Rain Event Count (REC) and Dry Event Count (DEC) quantify extreme daily events,
counting the number of days exceeding or falling below-specified rainfall percentiles within the 365-day lookback period.

5 Methods

We use a hedonic regression to examine the heterogeneous impact of rainfall on property values between 2000-

2019 across areas with different levels of fire risk. Our estimating equation 7 controls for housing characteristics

to isolate the effect of precipitation changes:

log(Pit) = β1Wit + β2Fi + β3(Wit · Fi) + Xitγx + Yt + Ci + ϵit (7)

The variable Pit represents the log-price of property i in transaction year t, Wit is a placeholder for our

wetness measure, Fi is a binary variable that is one if fire risk is high, the vector Xit represents the property

characteristics including property type (Single Family vs Multi Family), house age, living area square footage,

total rooms, number of bedrooms, slope of the property, and 20 equal sized control bins for elevation and

coastal proximity. Year-month fixed effects Y capture market-wide fluctuations in home prices over time, and

census tract fixed effects C absorb time-invariant neighborhood characteristics. Consequently, our identifica-

tion stems from within census tract variation in our wetness measure. The coefficient β1 captures the average

effect of changes in precipitation on log property prices in areas with low fire risk (Fi = 0), holding all other
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factors constant. For high fire risk areas (Fi = 1), the β2 coefficient represents the price premium or discount

associated with high fire risk regardless of precipitation levels, and the β3 coefficient shows how the effect of

precipitation on property prices differs in high fire risk areas compared to low fire risk areas. The total effect

of precipitation on log property prices in high fire risk areas is given by β1 + β3.

To account for the possibility of unobserved differences in housing characteristics, we also estimate a

repeat sales model given in equation 8. The repeat sales approach isolates the average difference in log price

experienced by a specific property due to changes in precipitation levels between sales, while also accounting

for how this effect varies with fire risk. Identification now stems from variations in precipitation through time

across repeat sales.

log(Pit) = β1Wit + β2(Wit · Fi) + β3(Fi · Ti) + β4(Ci · Ti) + Yt + Hi + ϵit (8)

Property fixed effects Hi control for all time-invariant characteristics of the property, including those that

are observable (such as location, elevation, or basic structural features) and those that are unobservable, miti-

gating the concerns for omitted variable bias. The year-month fixed effects Yt continue to control for market-

wide temporal variation and the interpretation of β1 and β2 remains the same: heterogeneous impact of pre-

cipitation in high and and low fire risk areas. Note that we do not control directly for Fi, as being in high vs

low risk is absorbed by the property fixed effects. We do control for the possibility that properties may appre-

ciate differently in high fire risk areas by including (Fi · Ti), where Ti is a continuous year variable generated

from the transaction date (i.e., a property sold at the end of the sixth month of 2012 would take the value of

2012.5). The coefficient β3 captures the yearly difference in price appreciation between high and low fire risk

properties. Similarly, the term (Ci · Ti) captures the time trend in property appreciation by census tract which

accounts for how preferences for different census tracts may have changed over time.

For both hedonic and repeat sales specifications, we apply a two-way clustering adjustment to standard

errors since ϵit may be correlated across space and time. The effect of precipitation on properties in the same

neighborhood is likely similar, which justifies clustering at the census tract level. Temporally, we cluster at the

year-month level to account for the correlation of precipitation patterns within months.

6 Results

Our hedonic model provides insights into how various property characteristics and rainfall patterns influence

housing prices in Hawaii, with a particular focus on areas with different levels of fire risk (Table 4). The

control coefficients in our hedonic model align with conventional expectations in the real estate literature.

We find that living area is positively associated with property values, with each additional 1,000 square feet

corresponding to a 25% higher price (p<0.01). This substantial effect underscores the premium placed on

spacious homes in the Hawaiian market. Similarly, each additional bedroom is associated with a 3% price
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increase (p<0.01), reflecting the value of functional living space. Single-family homes command a significant

premium of 20% (p<0.01) over multi-family dwellings. The positive coefficient for average slope (0.5% per

unit increase, p<0.01) suggests that properties on steeper terrain are more valuable. Conversely, house age

has a small negative effect (-0.4% per additional year, p<0.01), indicating a preference for newer properties.

Irrespective of precipitation, properties in high-fire-risk areas sell at about an 8-15% discount.

Table 4: Hedonic Regression Results

Dependent Variable: Log(Sales Price)

CRI365 FD SI REC>90 REC>99 DEC<10 DEC<1

Index -0.019*** -0.061*** -0.024** -0.003*** -0.008*** 0.000 -0.005***
(0.003) (0.013) (0.011) (0.000) (0.001) (0.000) (0.001)

Index × Fire Risk 0.011*** 0.067*** 0.042*** 0.002*** 0.010*** -0.001*** 0.000
(0.002) (0.011) (0.009) (0.000) (0.001) (0.000) (0.002)

Fire Risk -0.083** -0.086** -0.084** -0.148*** -0.124*** -0.082** -0.082**
(0.038) (0.038) (0.038) (0.039) (0.038) (0.038) (0.038)

House Age -0.004*** -0.004*** -0.004*** -0.004*** -0.004*** -0.003*** -0.004***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Living Area (1000 sq. ft.) 0.252*** 0.252*** 0.252*** 0.252*** 0.252*** 0.252*** 0.252***
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Bedrooms 0.030*** 0.030*** 0.030*** 0.030*** 0.030*** 0.030*** 0.030***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

SFR 0.202*** 0.201*** 0.202*** 0.202*** 0.201*** 0.202*** 0.202***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Avg. Slope 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Num. Obs. 268,406 268,406 268,406 268,406 268,406 268,406 268,406
R2 0.728 0.728 0.728 0.728 0.728 0.728 0.728
Adj. R2 0.716 0.716 0.716 0.716 0.716 0.716 0.716
Census FE Y Y Y Y Y Y Y
Year-month FE Y Y Y Y Y Y Y

Note: Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard errors in parentheses. This ta-
ble presents hedonic regression results with various rainfall measures. CRI360 (Cumulative Rainfall Index, 360-day), FD
(Fractional Deviation), SI (Shock Index), REC (Rain Event Count), and DEC (Dry Event Count) capture different aspects of
precipitation patterns. Subscripts for REC and DEC indicate percentile thresholds, with both measures calculated based on
a 365-day lookback period.

Turning to variables of primary interest, we find that higher precipitation levels, as proxied by various

measures, negatively affect property values in low-fire-risk areas. The Cumulative Rain Index (CRI365) coeffi-

cient indicates that a one unit higher index, representing one standard deviation higher rainfall at a particular

location, is associated with a 1.9% decline in property values (p < 0.01) in low fire risk areas. However, the

effect differs markedly in high-fire-risk areas, where the same increase corresponds to only a 0.8% decrease

in property values. Additional measures, including the Fractional Deviation (FD), Shock Index (SI), and Rain

Event Count (REC), provide further insights. A one-unit increase in FD is associated with a 6% decline in
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property values (p < 0.01) in low-fire-risk areas. This negative impact is fully reversed in high-fire-risk areas,

where a mild positive effect of 0.6% is observed. Similarly, a one-unit increase in SI corresponds to a 2.4%

decline in property values (p < 0.05) in low-fire-risk areas, while high-fire-risk areas exhibit a 1.8% increase in

property values.

In low fire risk areas, an additional day of rainfall above the 90th percentile (REC>90) is associated with a

0.3% decrease in property values (p<0.01), while an additional day above the 99th percentile (REC>99) corre-

sponds to a 0.8% decrease (p<0.01). In high fire risk areas, the coefficients are 0.1% and 0.2%, respectively.

The Dry Event Count (DEC) measures show that dry days must be very extreme to negatively impact

property values. An additional day below the 10th percentile (DEC< 10) has no impact on property values,

but an additional day below the 1st percentile (DEC< 1) of rainfall is associated with a 0.5% decrease in prop-

erty values (p < 0.01) in both high and low fire risk areas. Notably, the effect of dry conditions does not show

a significant interaction with fire risk, unlike the wet conditions captured by REC. This suggests that the rela-

tionship between precipitation patterns and fire risk may not be reciprocal: increased wetness reduces fire risk,

but increased dryness does not proportionally increase it, at least as perceived by the housing market.

Table 5: Repeat Sales Regression Results

Dependent Variable: Log(Sales Price)

CRI365 FD SI REC>90 REC>99 DEC<10 DEC<1

Index -0.021*** -0.057*** -0.019 -0.003*** -0.007*** 0.000 -0.005**
(0.003) (0.017) (0.012) (0.000) (0.002) (0.000) (0.002)

Index × Fire Risk 0.013*** 0.078*** 0.052*** 0.002*** 0.010*** -0.001** -0.004
(0.003) (0.014) (0.012) (0.000) (0.001) (0.000) (0.003)

Fire Risk × Year -0.005*** -0.004*** -0.005*** -0.005*** -0.004*** -0.005*** -0.005***
(0.002) (0.001) (0.002) (0.002) (0.001) (0.002) (0.002)

Num. Obs. 180,044 180,044 180,044 180,044 180,044 180,044 180,044
R2 0.880 0.881 0.880 0.881 0.881 0.880 0.880
Adj. R2 0.804 0.804 0.804 0.804 0.804 0.804 0.804
Property FE Y Y Y Y Y Y Y
Year-month FE Y Y Y Y Y Y Y
Census Time Trend Y Y Y Y Y Y Y

Note: Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard errors in parentheses. This table
presents repeat sales regression results with various rainfall measures. CRI360 (Cumulative Rainfall Index, 360-day), FD
(Fractional Deviation), SI (Shock Index), REC (Rain Event Count), and DEC (Dry Event Count) capture different aspects of
precipitation patterns. Subscripts for REC and DEC indicate percentile thresholds, with both measures calculated based on
a 365-day lookback period.

Our repeat sales model corroborates the hedonic model findings while addressing potential omitted vari-

able bias through its control of time-invariant property characteristics. The coefficients for rainfall indices

remain notably consistent between both models. For instance, a one standard deviation increase in CRI corre-

sponds to a 2.1% decrease in property values (p<0.05) in low fire risk areas, closely matching the 1.9% effect

observed in the hedonic model. Similarly, the fire risk-mitigating benefits of rainfall persist with properties
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in high-risk areas showing only a 0.8% depreciation following precipitation. Properties in fire risk areas face

an annual price appreciation penalty of 0.5%, indicating an accumulating long-term cost to being in these risk

zones.

Collectively, our findings in the hedonic and repeat sales model indicate that while rainfall generally

decreases property values, this negative effect is substantially moderated in fire-prone areas. The divergence

suggests that housing markets capitalize the protective function of rainfall against fire hazards in vulnerable

areas.

7 Discussion and Conclusion

The relationship between precipitation and fire risk operates through multiple channels that may have coun-

tervailing effects on property values. Drought conditions enhance fire risk by increasing the availability of

combustible fuel (Westerling et al., 2006; Lima et al., 2018; Puxley et al., 2024). Conversely, periods of excessive

precipitation can promote vegetation growth that subsequently becomes potential fire fuel under dry condi-

tions (Volkova et al., 2019; Hernández Ayala et al., 2021). However, wet conditions may also reduce fire risk

through several mechanisms: maintaining higher soil moisture that reduces ignition probability (Abatzoglou

and Williams, 2016), limiting the accumulation of dry fine fuels (Van Blerk et al., 2021), and altering vegetation

moisture content. These mitigating effects have been documented across diverse ecosystems, from tropical

regions (Spracklen et al., 2012) to urban-wildland interfaces (Sakai et al., 2004).

Our empirical findings suggest that real estate markets place significant value on the fire-mitigating ef-

fects of precipitation in high-risk areas. The attenuation of rainfall’s negative price effect in fire-prone zones

indicates that buyers pay attention to these complex ecological relationships in their property valuations. The

moderation effect is not sensitive to how we quantify rainfall, is robust to alternative regression specifications,

and is consistent when using alternative fire risk measures, including both designated risk zones and actual

fire occurrences. Such market behavior parallels documented responses to other natural hazards where risk

perceptions drive price dynamics (Bin and Landry, 2013; Hallstrom and Smith, 2005).

The magnitude of these effects is economically significant. While a one unit increase in cumulative rainfall

index (which is equivalent to a one standard deviation increase in precipitation) reduces property values by

1.9% in low-fire-risk areas, this negative effect decreases to 0.8% in high-risk areas. This difference suggests

that markets assign substantial value to precipitation’s potential role in fire risk mitigation. Similarly, each

additional day of extreme rainfall (above the 99th percentile) reduces values by 0.8% in low-risk areas but only

0.2% in high-risk areas.

Our findings have three key implications. First, there is value in further research examining if real es-

tate markets process compound climate risks correctly. While our results show that markets incorporate

precipitation-fire risk relationships into property values, these price responses occur in a context of evolving

ecological understanding (Westerling et al., 2006; Abatzoglou and Williams, 2016). As precipitation patterns
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become more variable, public education and disclosure requirements could help markets better reflect emerg-

ing scientific evidence.

Second, the heterogeneous impact of precipitation across fire risk zones suggests the need for spatially

targeted adaptation strategies. While our findings show that markets already differentiate between high and

low-fire-risk areas, the growing threat of climate change may warrant additional policy consideration. Local

governments might evaluate building codes or land management requirements in high-risk areas to comple-

ment market-based responses.

Third, our results inform ongoing debates about climate adaptation in spatially granular contexts. Hawaii’s

diverse microclimates and varying exposure to fire risk create valuable variation for studying climate-property

value relationships. The substantial price discounts we document in fire risk areas (8-15%) suggest a significant

market valuation of fire risk, with potential implications for public investment in risk mitigation infrastructure

extending beyond Hawaii’s unique context.

Several promising directions for future research emerge from our analysis. While we document how mar-

kets process climate risks in Hawaii’s setting, investigating whether similar patterns exist in other regions

would illuminate the broader applicability of our findings. Studies could examine how major events like the

2023 Lahaina fire influence market responses to precipitation in fire risk areas, and how variations in risk com-

munication affect market pricing of compound climate risks. Such analyses would extend our understanding

beyond single climate hazards to better capture the interactions between multiple environmental risks.

In conclusion, our findings reveal that markets actively price both precipitation and fire risks through mea-

surable effects on property values. The observed price patterns suggest that buyers weigh precipitation’s role

in fire risk when valuing properties, contributing to a growing literature on how real estate markets price com-

pound climate risks. As communities worldwide confront intersecting environmental hazards, understanding

these market responses becomes increasingly relevant for policy design.
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A Appendix

Our fire risk designation is based on wildfire risk zones established in the mid-2000s, with boundaries remain-

ing constant from data collection in 2006-2007 to the end of our sample period in 2019. While research shows

that home buyers respond to such risk designations (Donovan et al., 2007), figure A1 reveals that actual wildfire

occurrences do not perfectly align with these established risk zones. To validate our findings, we complement

our analysis using a time-varying fire index based on actual wildfire occurrences, rather than relying solely on

the time-invariant risk ratings.

Figure A1: Actual Fire Occurrences and Fire Risk Areas
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We obtain the wildfire occurrence data from the Pacific Fire Exchange website. The dataset primarily

focuses on fires equal to or larger than 20 hectares (50 acres) and integrates multiple data sources including

ground-based GPS-mapped fire perimeters from the Hawaii Wildfire Management Organization, National

Park Service records from Hawaii Volcanoes National Park, US Geological Survey’s Monitoring Trends in

Burn Severity satellite data (2002-2011), and the Army Natural Resource Program-Oahu. Additional fires were

mapped by the University of Hawaii’s Department of Natural Resources and Environmental Management

using LANDSAT and Sentinel-2 satellite imagery. The state had a total of 310 wildfires between 2000-2019,

with an average size of 796 acres.

Existing literature typically employs either the size and proximity of the nearest fire (Holmes et al., 2008;

Stetler et al., 2010) or considers the number and average size of fires within a set distance from properties

(Hansen and Naughton, 2013; Xu and van Kooten, 2013), finding significant impacts on property values. How-

ever, using these attributes individually can overlook the non-linear relationships between fire exposure and

property values, potentially missing relevant fire characteristics. To circumvent these issues, we construct a

transaction-specific index following Shi et al. (2022). This measure integrates all major aspects of wildfire ex-

posure; fire sizes, distances to fires, and the number of fires. Specifically, for each property transaction i at time

t, we calculate:

fireindexit = ∑
k

sizeα
kt

exp(distancekt)
(9)

where sizekt represents the size of fire k in acres, distancekt indicates the proximity in km from the property

to the centroid of fire k, and α is a diminishing parameter estimated using a grid search method that minimizes

the sum of squared errors. This specification allows for nonlinear impacts of fire size while accounting for

spatial decay in the fire’s influence through the exponential distance term.

Following (Shi et al., 2022), we use wildfires occurring between three years and 60 days before the sale date

to construct the fire index. The lower limit of 60 days is selected because the decision to purchase a property

is often made around two months before the official recording date, as commonly noted in hedonic studies

(Loomis, 2004; Mueller et al., 2009). The upper limit of three years is informed by literature indicating that

initial high price discounts due to wildfire risk tend to diminish over a 2–3-year period (McCoy and Walsh,

2018). We further restrict our analysis to wildfires within 10 km of the property 4. Prior studies indicate that

wildfires beyond 20 km generally do not significantly affect property values (Stetler, 2008; Stetler et al., 2010),

which has led to 20 km being a standard search radius in previous research (Shi et al., 2022). However, we

adopt a 10 km radius, as the geographic area in our study is generally smaller than those examined in these

earlier works.

We employ the conventional grid search method, which exhaustively searches through a manually spec-

4We calculate distances from the center of each property to the centroid of each fire polygon, reflecting the assumption
that a fire’s impact emanates from its center.
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ified subset of possible values for α (Dufour and Neves, 2019; Shi et al., 2022). Specifically, we calculate the

fire index for values of α between [−2, 2] in increments of 0.1 and estimate our models accordingly. The value

that minimizes the sum of squared residuals (SSR) serves as the estimate for α. Previous studies suggest that

α should be relatively small, likely within the range of 0 to 1, indicating a diminishing marginal impact of fire

size on property values (Xu and van Kooten, 2013; Shi et al., 2022). In this context, our estimate of α = 0.2

aligns well with existing literature.

Table A1 presents summary statistics for the newly added fire-related variables, using the same sample

as the previously analyzed dataset. Overall, 43% of transactions in the sample had some level of wildfire

exposure. The mean fire index value of 0.41 and median of 0 suggest that most of these properties had low fire

exposure. The maximum fire index value of 18 highlights that certain properties were situated in significantly

high-risk zones.

Table A1: Summary Statistics for Fire Index Sample (2000-2019)

Mean Median Sd Min. Max.

Fire Index 0.41 0 1.1 0 18
Fire Index > 0 0.43 0 0.5 0 1

Note: Descriptive statistics for the fire index sample for the four islands of Maui, Kaua‘i, Honolulu, and
Hawai‘i. The variable "Fire Index > 0" is a dummy, equal to 1 if the fire index for a transaction is positive. N =
268,406.

We now estimate our main hedonic specification using the time-varying fire index measure as opposed

to the fire risk designation. Table A2 reinforces our core findings while providing additional robustness. The

results continue to demonstrate the dual negative effects of both rainfall and wildfire risk on property values.

More importantly, they substantiate our primary hypothesis regarding rainfall’s moderating effect on wildfire

risk.

Specifically, in areas considered safe from fires, a one unit higher CRI, representing one standard devia-

tion higher rainfall at a particular location, corresponds to a 1.5% decrease in property values. However, for

properties in fire-prone areas that experienced rainfall, this negative effect is reduced to approximately 1%.

This pattern, observed across both static and dynamic measures of fire risk, provides robust evidence for our

central finding: rainfall significantly mitigates the negative impact of being in a fire-prone area. We also find

some support (p < 0.1) that each additional dry day further reduces property values in areas at risk of wildfire.

We also examine correlations among key variables to assess the extent of dependence between our fire risk

and precipitation measures (Figure A2). The fire risk zone indicator correlates positively with our dynamic fire

exposure index, suggesting consistency between designated risk areas and actual fire patterns. Precipitation

measures exhibit expected correlations with each other but show minimal correlation with either fire risk mea-

sure, supporting the identification of interaction effects in our main analysis.

Next, we show that our results are not sensitive to the choice of lookback period before the property
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Table A2: Hedonic Regression Results with Fire Index

Dependent Variable: Log(Sales Price)

CRI365 FD SI REC>90 REC>99 DEC<10 DEC<1

Index -0.015*** -0.019** -0.001 -0.002*** -0.003* -0.001*** -0.006***
(0.003) (0.011) (0.009) (0.000) (0.001) (0.000) (0.001)

Fire Index -0.011*** -0.011*** -0.011*** -0.034*** -0.021*** -0.022*** -0.011***
(0.003) (0.003) (0.003) (0.005) (0.004) (0.004) (0.003)

Index × Fire Index 0.006*** 0.018*** 0.013*** 0.001*** 0.003*** -0.001*** -0.003*
(0.001) (0.004) (0.003) (0.000) (0.001) (0.000) (0.002)

House Age -0.004*** -0.004*** -0.004*** -0.004*** -0.004*** -0.004*** -0.004***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Living Area (1000 sq. ft.) 0.252*** 0.252*** 0.252*** 0.252*** 0.252*** 0.252*** 0.252***
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Bedrooms 0.030*** 0.030*** 0.030*** 0.030*** 0.030*** 0.030*** 0.030***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

SFR 0.202*** 0.202*** 0.202*** 0.202*** 0.202*** 0.202*** 0.202***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Avg. Slope 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Num. Obs. 268,406 268,406 268,406 268,406 268,406 268,406 268,406
R2 0.728 0.728 0.728 0.728 0.728 0.728 0.728
Adj. R2 0.716 0.716 0.716 0.716 0.716 0.716 0.716
Census FE Y Y Y Y Y Y Y
Year-month FE Y Y Y Y Y Y Y

Note: Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard errors in parentheses. This ta-
ble presents hedonic regression results with various rainfall measures. CRI365 (Cumulative Rainfall Index, 365-day), FD
(Fractional Deviation), SI (Shock Index), REC (Rain Event Count), and DEC (Dry Event Count) capture different aspects of
precipitation patterns. Subscripts for REC and DEC indicate percentile thresholds, with both measures calculated based on
a 365-day lookback period.

transaction. We consider the alternative construction of the cumulative rainfall index with lookbacks of 90 and

180 days respectively. We also consider the impact of Rain and Dry Event counts based on various percentile

thresholds. Table A3, A4, and A5 report these results.

The Cumulative Rain Index (CRI) captures broad precipitation patterns over 90, 180, and 365 day look-

backs, comparing them to either fixed historical (1990-1999) or dynamic (prior decade) baselines. Table A6

reports fixed baseline results. Both CRI and Fire Risk coefficients maintain similar magnitudes and statistical

significance across specifications.5 However, the interaction effects between CRI and fire risk are muted under

fixed baseline, particularly for the shorter 90 and 180-day lookback periods. This suggests buyers emphasize

recent weather trends over historical patterns when assessing climate risks. While FD and SI measures show

5Under the fixed baseline specification, the CRI coefficients were consistently negative: -1.9% (365-day), -1.5% (180-
day), and -1.0% (90-day), with all coefficients significant at 1% level. In dynamic baseline, these are -1.7%, -1.1%, and -0.7%,
respectively, significant at either 1% or 5% level. In both cases, Fire Risk coefficient is approximately -0.8%, significant at
5% level (see Tables 4 & A3).
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Figure A2: Correlation Matrix

Note: Lookback period is 365 days where applicable.

stronger fire risk mitigation effects even when anchored to the same historical 1990-1999 period, this could be

due to markets viewing sharp monthly rainfall deviations as more effective at temporarily reducing fire risk

than smooth cumulative patterns.
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Table A3: Hedonic Regression Results with Different Lookbacks for CRI

Dependent Variable: Log(Sales Price)

Lookback Days 180 90 180 90

CRI -0.015*** -0.010*** -0.010*** -0.007**
(0.004) (0.004) (0.003) (0.003)

Fire Risk -0.084** -0.083**
(0.038) (0.038)

CRI × Fire Risk 0.010*** 0.007***
(0.002) (0.003)

Fire Index -0.011*** -0.011***
(0.003) (0.003)

CRI × Fire Index 0.005*** 0.003***
(0.001) (0.001)

House Age -0.004*** -0.004*** -0.004*** -0.004***
(0.000) (0.000) (0.000) (0.000)

Living Area (1000 sq. ft.) 0.252*** 0.252*** 0.252*** 0.252***
(0.006) (0.006) (0.006) (0.006)

Bedrooms 0.030*** 0.030*** 0.030*** 0.030***
(0.003) (0.003) (0.003) (0.003)

SFR 0.201*** 0.201*** 0.200*** 0.200***
(0.009) (0.009) (0.009) (0.009)

Avg. Slope 0.005*** 0.005*** 0.005*** 0.005***
(0.001) (0.001) (0.001) (0.001)

Num. Obs. 268,406 268,406 268,406 268,406
R2 0.728 0.728 0.728 0.728
Adj. R2 0.716 0.716 0.716 0.716
Census FE Y Y Y Y
Year-month FE Y Y Y Y

Note: Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard
errors are in parentheses. This table presents hedonic regression results using differ-
ent lookback periods for the Cumulative Rainfall Index, incorporating both static and
dynamic fire risk measures.
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Table A4: Hedonic Regression Results with Different Lookbacks for REC

Dependent Variable: Log(Sales Price)

365 Days 180 Days 90 Days

REC95 REC99 REC95 REC90 REC99 REC95 REC90

Index -0.005*** -0.006*** -0.004*** -0.003*** -0.002 -0.004*** -0.003***
(0.001) (0.002) (0.001) (0.000) (0.002) (0.001) (0.001)

Index × Fire Risk 0.003*** 0.010*** 0.003*** 0.002*** 0.009*** 0.003*** 0.002***
(0.000) (0.001) (0.001) (0.000) (0.002) (0.001) (0.001)

Fire Risk -0.147*** -0.106*** -0.113*** -0.112*** -0.093** -0.098** -0.099***
(0.039) (0.038) (0.038) (0.038) (0.038) (0.038) (0.038)

House Age -0.004*** -0.004*** -0.004*** -0.004*** -0.004*** -0.004*** -0.004***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Living Area (1000 sq. ft.) 0.252*** 0.252*** 0.252*** 0.252*** 0.252*** 0.252*** 0.252***
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Bedrooms 0.030*** 0.030*** 0.030*** 0.030*** 0.030*** 0.030*** 0.030***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

SFR 0.202*** 0.201*** 0.201*** 0.202*** 0.201*** 0.201*** 0.202***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Avg. Slope 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Num. Obs. 268,406 268,406 268,406 268,406 268,406 268,406 268,406
R2 0.729 0.728 0.728 0.728 0.728 0.728 0.728
Adj. R2 0.716 0.716 0.716 0.716 0.716 0.716 0.716
Census FE Y Y Y Y Y Y Y
Year-month FE Y Y Y Y Y Y Y

Note: Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard errors in parentheses. REC (Rain
Event Count) variables are partitioned by lookback periods (365, 180, 90 days) and percentile thresholds (99, 95, 90).
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Table A5: Hedonic Regression Results with Different Lookbacks for DEC

Dependent Variable: Log(Sales Price)

365 Days 180 Days 90 Days

DEC5 DEC10 DEC5 DEC1 DEC10 DEC5 DEC1

Index -0.001* 0.000 0.000 -0.004** 0.001 0.000 -0.006**
(0.000) (0.000) (0.001) (0.002) (0.001) (0.001) (0.002)

Index × Fire Risk 0.000 -0.001* -0.001 0.001 0.000 0.000 0.004
(0.000) (0.000) (0.001) (0.003) (0.001) (0.001) (0.003)

Fire Risk -0.080** -0.073** -0.078** -0.083** -0.081** -0.083** -0.083**
(0.039) (0.038) (0.038) (0.038) (0.039) (0.038) (0.038)

House Age -0.004*** -0.004*** -0.004*** -0.004*** -0.004*** -0.004*** -0.004***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Living Area (1000 sq. ft.) 0.252*** 0.252*** 0.252*** 0.252*** 0.252*** 0.252*** 0.252***
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Bedrooms 0.030*** 0.030*** 0.030*** 0.030*** 0.030*** 0.030*** 0.030***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

SFR 0.202*** 0.202*** 0.202*** 0.202*** 0.202*** 0.202*** 0.202***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Avg. Slope 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Num. Obs. 268,406 268,406 268,406 268,406 268,406 268,406 268,406
R2 0.728 0.728 0.728 0.728 0.728 0.728 0.728
Adj. R2 0.716 0.716 0.716 0.716 0.716 0.716 0.716
Census FE Y Y Y Y Y Y Y
Year-month FE Y Y Y Y Y Y Y

Note: Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard errors in parentheses. DEC (Dry
Event Count) variables are partitioned by lookback periods (365, 180, 90 days) and percentile thresholds (10, 5, 1).
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Table A6: Hedonic Regression Results with Different Lookbacks for CRI (1990-1999 base)

Dependent Variable: Log(Sales Price)

Lookback Days 365 180 90

CRI -0.017*** -0.011*** -0.007**
(0.003) (0.004) (0.004)

Fire Risk -0.080** -0.082** -0.082**
(0.038) (0.038) (0.038)

CRI × Fire Risk 0.006** 0.004 0.002
(0.003) (0.003) (0.003)

House Age -0.004*** -0.004*** -0.004***
(0.000) (0.000) (0.000)

Living Area (1000 sq. ft.) 0.252*** 0.252*** 0.252***
(0.006) (0.006) (0.006)

Bedrooms 0.030*** 0.030*** 0.030***
(0.003) (0.003) (0.003)

SFR 0.201*** 0.201*** 0.201***
(0.009) (0.009) (0.009)

Avg. Slope 0.005*** 0.005*** 0.005***
(0.001) (0.001) (0.001)

Num. Obs. 268,406 268,406 268,406
R2 0.728 0.728 0.728
Adj. R2 0.716 0.716 0.716
Census FE Y Y Y
Year-month FE Y Y Y

Note: Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard
errors (by Census Tract and year-month) are in parentheses. This table presents he-
donic regression results using different lookback periods (365, 180, and 90 days) for
the Cumulative Rainfall Index, where each period’s rainfall is compared to the same
calendar days in the fixed base period of 1990-1999.
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