Visualizing Multiple Regression

based on Edward H. S. Ip (2001) and Peter E. Kennedy (2002)

Coefficient of Determination $R^{2}=S S R / S S T$

$$
R^{2}=r_{y x 1}^{2}+r_{y x 2}^{2}
$$

Adding uncorrelated variables
TSS=5444
 increases R^{2}

Coefficient of Partial Determination

Multiple Partial Correlation

Sequence Matters

x_{2} enters second

x_{2} enters last

Multicollinearity

F-test $=$
area covered / area not covered
$=$ significant
t-test $=$
additional area covered by last variable / area not covered
$=$ not significant for any variable

Alternative Explanation: Estimation

Variation in X

Multiple Regression

The ratio of the overlap (the blue + red + green area) to the y circle is interpreted as the R^{2} from regressing y on X and W.

Estimating b_{x} and bw

Estimating b_{x} and b_{w}

Excluding the red area will result in unbiased b_{X} and b_{W} estimates

$$
b_{X}=\left(X^{* \prime} X^{*}\right)^{-l} X^{* \prime} y^{*} \text { where } y^{*}=M_{w} y \text { and } X^{*}=M_{w} X
$$

Multicollinearity

Figure 3a Modest collinearity

Figure 3b Considerable collinearity

Effect on: bias and variance of b_{X} and b_{W}.
What is the effect of perfect collinearity?

Omitted Variable

Effect on: bias and variance of b_{X} and b_{W}.

$$
\begin{aligned}
& M S E=(\text { bias })^{2}+\text { variance } \\
& =>\text { drop highly collinear variable }
\end{aligned}
$$

Effect on: bias of error variance
What if W is orthogonal to X ?

Application: Detrending Data

