Visualizing Multiple Regression based on Edward H. S. Ip (2001) and Peter E. Kennedy (2002) ### Coefficient of Determination R²=SSR/SST $$R^2 = r^2_{yx1} + r^2_{yx2}$$ Adding uncorrelated variables increases R^2 $$SS(gender) = 337, SS(gender|Nsuper) = 212,$$ SS(Nsuper) = 1494, SS(gender, Nsuper) = 1706 ### Coefficient of Partial Determination ### Multiple Partial Correlation #### Sequence Matters *x*₂ *enters second* x₂ enters last #### Multicollinearity F-test = area covered / area not covered = significant t-test = additional area covered by last variable / area not covered = not significant for any variable ## Alternative Explanation: Estimation Variation in Black Variation in y that cannot be explained by X (error variance) Purple Variation that y and X have in common. This co-movement is used in OLS Variation in X estimation of the slope coefficient b_X Friday, October 5, 12 $Larger\ overlap => smaller\ b_X\ variance$ ### Multiple Regression The ratio of the overlap (the blue + red + green area) to the y circle is interpreted as the \mathbb{R}^2 from regressing y on X and W. #### Estimating bx and bw 1) use blue + red to estimate b_X and green + red to estimate b_W 2) throw away red, use blue to estimate b_X and green to estimate b_W 3) divide red somehow #### Estimating bx and bw 1) use blue + red to estimate b_X and green + red to estimate b_W 2) throw away red, use blue to estimate b_X and green to estimate b_W 3) divide red somehow Excluding the red area will result in unbiased b_X and b_W estimates $b_X = (X^* X^*)^{-1} X^* y^* \text{ where } y^* = M_w y \text{ and } X^* = M_w X$ #### Multicollinearity Effect on: bias and variance of b_X and b_W . What is the effect of perfect collinearity? #### Omitted Variable Effect on: bias and variance of b_X and b_W . $MSE = (bias)^2 + variance$ => drop highly collinear variable Effect on: bias of error variance What if W is orthogonal to X? # Application: Detrending Data 1) regress y on X and W 2a) regress y on W, save residuals r_y 2b) regress X on W, save residuals r_X 2c) regress r_y on r_X Compare results from 1) and 2)