Visualizing Multiple Regression

based on Edward H. S. Ip (2001) and Peter E. Kennedy (2002)

Coefficient of Determination R²=SSR/SST

$$R^2 = r^2_{yx1} + r^2_{yx2}$$

Adding uncorrelated variables increases R^2

$$SS(gender) = 337, SS(gender|Nsuper) = 212,$$

SS(Nsuper) = 1494, SS(gender, Nsuper) = 1706

Coefficient of Partial Determination

Multiple Partial Correlation

Sequence Matters

*x*₂ *enters second*

x₂ enters last

Multicollinearity

F-test =

area covered / area not covered

= significant

t-test =

additional area covered by last variable / area not covered

= not significant for any variable

Alternative Explanation: Estimation

Variation in Black Variation in y that cannot be explained by X (error variance) Purple Variation that y and X have in common. This co-movement is used in OLS Variation in X estimation of the slope coefficient b_X

Friday, October 5, 12

 $Larger\ overlap => smaller\ b_X\ variance$

Multiple Regression

The ratio of the overlap (the blue + red + green area) to the y circle is interpreted as the \mathbb{R}^2 from regressing y on X and W.

Estimating bx and bw

1) use blue + red to estimate b_X and green + red to estimate b_W

2) throw away red, use blue to estimate b_X and green to estimate b_W

3) divide red somehow

Estimating bx and bw

1) use blue + red to estimate b_X and green + red to estimate b_W

2) throw away red, use blue to estimate b_X and green to estimate b_W

3) divide red somehow

Excluding the red area will result in unbiased b_X and b_W estimates

 $b_X = (X^* X^*)^{-1} X^* y^* \text{ where } y^* = M_w y \text{ and } X^* = M_w X$

Multicollinearity

Effect on: bias and variance of b_X and b_W . What is the effect of perfect collinearity?

Omitted Variable

Effect on: bias and variance of b_X and b_W .

 $MSE = (bias)^2 + variance$

=> drop highly collinear variable

Effect on: bias of error variance

What if W is orthogonal to X?

Application: Detrending Data

1) regress y on X and W

2a) regress y on W, save residuals r_y

2b) regress X on W, save residuals r_X

2c) regress r_y on r_X

Compare results from 1) and 2)