
1

Outline

● the Collection interface
● parametrized classes and interfaces
● the Collection hierarchy
● Sets and Maps
● the AbstractCollection hierarchy

2

Collection Interface

● a collection holds values of a different type E
● the number of values can change over time

● unless the collection is unmodifiable
● collections typically have at least two constructors

● one with no arguments
● one with a collection as an argument, makes a copy of the collection
● these constructors are not defined by the interface

– since interfaces don’t list constructors!
● all collections in the Java standard library include these two

constructors

3

Collection Methods

● methods:
● size
● search: contains, containsAll (why not containsAny?)
● remove is also a search operation: remove, removeAll, removeIf,

retainAll
● add, addAll
● toArray, iterator, spliterator, stream, parallelStream

● Collection does not specify an ordering of elements
● so a set class or set interface can implement Collection
● e.g. the interface java.util.Set<E>

● in comparison, a List imposes an ordering (0, 1, 2, 3, …) on its elements

4

Type Parameters

● classes and interfaces can be parametrized over types

● we have seen this for the specific Collections ArrayList and LinkedList

● in this case, the type parameter:

● outside the class, must be provided whenever an object of that class is created

LinkedList<String> strings = new LinkedList<>();

ArrayList<String> string2 = new ArrayList<String>();

List<Integer> ints = new ArrayList<>();

● inside the class or interface, stands for the actual type that the caller will use

public class LinkedList<E> {

 LinkedNode<E> head;

 ...

 E item;

● inside the class or interface, the type parameter represents any object type, so all the Object methods are available,
including toString and equals

5

Type Parameters in Practice

● type parameters are conventionally written with a single upper-case letter:

● E for element or T for type

● this makes it easy to tell where code is using a type parameter rather than an actual type

● the compiler does not enforce this convention

● classes and interfaces can be parametrized over multiple types:

● public interface keyValueStore<K, V> { ...

● the Java type system is not strong enough to let us safely create an array of a parametrized type:

@SuppressWarnings("unchecked")

public ArrayList() {

 data = (E []) new Object [16];

}

6

Collection Hierarchy

● List and Set are sub-interfaces of Collection

● Lists are ordered
● Sets are unordered and cannot have duplicates

● Many classes implement collection, including ArrayList, Vector, LinkedList,
Stack, and at least 5 Set classes

● Because there are many possible constraints on adding values, add returns
false if the element cannot be added

● specifically if adding to a set that already has the value
● if refusing to add for any other reason, add throws an exception

– e.g. if adding null to a collection that will not store null values

7

Sets

● a set is a collection of elements where:
● each element is unique

– .equals is used to determine element uniqueness
– the value of set elements should never be modified,

otherwise the uniqueness property may be violated
● elements are unordered

– this is different from lists and from all your
homeworks

– iterators are free to return elements in any order

8

Set Interfaces

● a Set is a collection of elements where:
● each element is unique
● elements are unordered

● a SortedSet keeps elements in order as defined by a comparator
● a NavigableSet is a SortedSet that allows searching for the next element

before or after a given value
● the given value need not be in the set
● for example, navigableSet.lower("hello world") gives the nearest string

preceding "hello world" even if "hello world" is not in the set
● descendingIterator() gives an iterator that returns the elements in reverse

order

9

Map Interface

a map is similar to an array or array list, but instead of using an integer index, values are indexed by arbitrary objects of type K:

interface Map<K, V> {

 V get(Object key); // throws ClassCastException if key is not of type K

 V put(K key, V value);

 V remove(Object key);

 V replace(K key, V value);

 Set<K> keySet(); // a Set represents unique values, and keys are unique

 Collection<V> values();

}

● Map does not inherit from Collection and is parametrized on two types

● keys must be unique, objects need not be

● it is often convenient to use strings as keys

10

Abstract Collection Classes

● to create a Collection:
● extend AbstractCollection and implement add, size, and
iterator

● or extend AbstractList and implement add, get, remove, set,
and size

● or extend AbstractSequentialList, and implement
listIterator and size

● these abstract classes let you create a collection with a minimum
of work

● this strategy is not allowed for your homeworks!
● in-class exercise: why not?

11

AbstractCollection

● to create a Collection, extend AbstractCollection
and implement (override) add, size, and iterator

● no need to override the add method if the class is
unmodifiable

● since Collection has no get method, these three
methods are sufficient for implementing a reasonable
collection

● individual implementations may override additional
methods of Collection

12

AbstractList

● extends AbstractCollection
● to create a Collection, extend AbstractList, and implement add, get,

remove, set, and size
● this abstract list is generally intended for collections where elements are

stored in a “random access” data structure such as an array
● get, set are typically O(1)
● add, remove may be O(1) at the end and O(n) elsewhere
● set is only needed for modifiable lists, add and remove are only needed

for variable-sized lists
– so you can have an unmodifiable, fixed-sized list by providing only get

and size!!!
● the AbstractList class uses get and size to implements the iterators

● elements are stored at a specific index

13

AbstractSequentialList

● extends AbstractList

● to create a Collection, extend AbstractSequentialList, and implement
listIterator and size

● this class is designed for sequential-access data structures such as doubly-
linked lists

● listIterator is powerful enough to add and remove and find elements

● but the get operation then takes time O(n)
● implementing the listIterator might be as hard as implementing the list

methods directly!

● but if you already have a listIterator, the other methods are free

