
1

Outline: exam review

● List, ArrayList, LinkedList
● parametrized types
● iterators
● invariants
● reminders: recursion, runtime analysis, binary search

2

exam review

● format similar to last exam

● material from lecture notes (including in-class exercises), book, assignments,
quizzes

● for the book, all the material in Chapters 2-2.9 and 5.

● must also be familiar with the material presented before exam 1, i.e. review
the material (and the exam, quizzes, and homework assignments)

● classes and interfaces, runtime analysis, binary search.

● review all the code posted on the course web page. Understand this code well
enough to be able to code similar programs

● the actual question may ask for something similar, and the corresponding code may be the
same or different.

3

Collection and List

● hierarchy of parametrized interfaces and classes
● including abstract classes and non-abstract (concrete) classes
● List and Collection are interfaces, ArrayList and LinkedList are classes

● the type parameter E indicates the types of objects stored by the
collection

interface List<E> extends Collection<E> { ...
● elements of a list are in order and have an index

4

List

● variable sized collection of objects in a particular sequence
– being in sequence, each element corresponds to a specific index in 0..list.size()-1

● duplicate and null elements are permitted
– unless the list is special-purpose, e.g. in some of the assignments

● the List interface defines required methods
● the AbstractList class helps in implementing new list classes
● some particularly useful methods of List:

– boolean add(E e) add at the end of a list
– void add(int index, E e) add within the list
– Iterator<E> iterator() create a new iterator
– E remove(int index) remove and return the object at the given position
– int size()

5

ArrayList

● a list in which the elements are stored in an array, usually called data

● the array may have more elements than the list, so an instance variable (size) is
needed to keep track of the size of the list

● capacity() returns data.length, the size of the underlying array
● invariant: size <= capacity()

● as the list grows, it may need a new array, so in the worst case adding at the end of the
array is O(n)

● as long as the array grows by doubling the capacity, the time for adding n elements is O(n), meaning
adding at the end takes amortized constant time

● adding and removing at the beginning or in the middle of the array is always O(n) --
make sure you understand why

●

6

LinkedList

● a list in which each element is stored in a node, and nodes are linked to each
other

● the number of nodes is exactly the same as the number of elements
● each node has a reference to the value stored and a reference to the next

node in the list: item or value, and next
● the end of the list is reached when the next field has the value null
● a linked list must have as instance variable the head of the list
● adding at the end of the linked list is faster if a tail pointer is kept -- O(1)

instead of O(n)
● adding and removing at the front of a linked list is always O(1)

7

Circular and doubly-linked list

● in a circular list, the next field of the last LinkedNode refers
(back) to the head of the list

● in a doubly-linked list, each node has the next reference and
also a reference to the node before it (prev or previous)

● the previous node of the head is null, and the next node of the tail is null
● in a doubly-linked circular list, the tail is the previous node for

the head, and the head is the next node for the tail
● prev and next are never null

●

8

Iterators

● an iterator is an object that keeps track of the state of a traversal of a collection

● an iterator is like a bookmark for a book: there can be many bookmarks for a given
book

● more than one of them might be on the same page
● calling the iterator() method of a collection class is the common way to create a new

iterator

● once the iterator exists, calls to hasNext() and next() may continue until there are no
more elements

● or, can repeat calling next() until it throws an exception
● examples:

9

Using Iterators: Example 1/3

● calls to hasNext() and next() may continue until there are no more
elements

● for example:

List<E> list = ...

Iterator<E> iter = list.iterator();

while (iter.hasNext()) {

 E variable = iter.next();

 // can use "variable" in the loop

}

10

Using Iterators: Example 2/3

● can repeat calling next() until it throws an exception

List<E> list = ...

Iterator<E> iter = list.iterator();

while (true) {

 try {

 E variable = iter.next();

 // can use "variable" in the loop

 } catch (NoSuchElementException e) {

 break;

 }

}

11

Using Iterators: foreach (Example 3/3)

● as an alternative to explicitly calling the iterator methods,
use the foreach style:
for (E variable: list) {

 // can use "variable" in the loop

}

● list must implement Iterable<E> (or be an array)

12

Building an Iterator

● for the exam, must understand and be able to implement at least the hasNext()
and next() methods of LinkedListIterator.java and an iterator for ArrayLists, and
of other simple iterators

● each iterator is its own separate class

● and may be internal to a collection class
● the iterator needs access to the elements of the collection

● perhaps provided to the constructor
● perhaps from the instance variables of the enclosing collection class

● each iterator needs its own variables to keep track of its state, that is, where it is
in the iteration

13

Invariants

● an invariant is something the programmer believes to be true about relationships
among the program's variables

● for example: in binary search, if the object we are looking for is in the array, it must be
between indices start..end

● this requires that the array must be sorted using the same comparison operation that is used in the
binary search

● in an object-oriented language such as Java, the most important relationships are
among an object's instance variables (class data fields)

● if a public method is called with the invariant being true, the invariant must still be true
at the end of the call

● a class invariant must always be true at the end of a public constructor

14

recursion

● recursion is useful when we have a problem that:
● has an easy solution for some base cases, and
● for all other cases, has a solution that can be expressed in terms of solving a

problem that is closer to the base case.
● the problem that is closer to the base case is often a smaller problem

● e.g., smaller value of n
● e.g., linked list shorter by one node

● recursion is a way of thinking as well as a programming technique
● mathematicians often think recursively

15

recursion examples on linked lists

● the length of a linked list beginning with node is one more than the length of the list beginning with
node.next:

private long listLength(LinkedNode<E> node) {

 if (node == null) return 0;

 return 1 + listLength(node.next);

}

● adding to or removing from a linked list is easy if we are willing to create new LinkedNodes for the
backbone of the linked list:

private LinkedNode<E> remove(LinkedNode<E> node, int index) {

 if (node == null) return null;

 if (index == 0) return node.next; // remove this value

 return new LinkedNode<E>(node.value, remove(node.next, index – 1));

● called as follows: head = remove(head, index);

16

runtime analysis

● constant time: linked list insertion or deletion at the front, linked list insertion at the
back if a tail pointer is kept

● amortized constant time for insertion at the end of an array list
● log time if doubling the size of the problem increases the time by a constant: binary

search
● later we will see tree operations that take log time

● linear time: ordered list insertion or deletion, linear search
● quadratic time: removing n elements from the end of a singly-linked list or the front of

an array list
● exponential time if adding one element doubles the time: towers of Hanoi, clear but

inefficient computation of fibonacci numbers

