Outline: exam review

* List, ArraylList, LinkedList
* parametrized types

* iterators

* invariants

* reminders: recursion, runtime analysis, binary search

—



exam review

 format similar to last exam

 material from lecture notes (including in-class exercises), book, assignments,
quizzes

« for the book, all the material in Chapters 2-2.9 and 5.

« must also be familiar with the material presented before exam 1, i.e. review
the material (and the exam, quizzes, and homework assignments)

e classes and interfaces, runtime analysis, binary search.

* review all the code posted on the course web page. Understand this code well
enough to be able to code similar programs

e the actual question may ask for something similar, and the corresponding code may be the

same or different. E



Collection and List

* hierarchy of parametrized interfaces and classes

* including abstract classes and non-abstract (concrete) classes

* List and Collection are interfaces, ArrayList and LinkedList are classes

* the type parameter E indicates the types of objects stored by the
collection

interface List<E> extends Collection<E> { ...

* elements of a list are in order and have an index

—



List

variable sized collection of objects in a particular sequence

being in sequence, each element corresponds to a specific index in 0..list.size()-1
duplicate and null elements are permitted

unless the list is special-purpose, e.g. in some of the assignments
the List interface defines required methods

the AbstractList class helps in implementing new list classes

some particularly useful methods of List:
boolean add(E e) add at the end of a list

void add(int index, E e) add within the list
Iterator<E> iterator () create a new iterator

E remove (int index) remove and return the object at the given position

~ int size () n



ArraylList

* alistin which the elements are stored in an array, usually called data

* the array may have more elements than the list, so an instance variable (size) is
needed to keep track of the size of the list
* capacity () returns data.length, the size of the underlying array
* jnvariant: size <= capacity ()
* asthe list grows, it may need a new array, so in the worst case adding at the end of the
array is O(n)

* aslong as the array grows by doubling the capacity, the time for adding n elements is O(n), meaning
adding at the end takes amortized constant time

* adding and removing at the beginning or in the middle of the array is always O(n) --
make sure you understand why

—



LinkedList

°* alistin which each element is stored in a node, and nodes are linked to each
other

* the number of nodes is exactly the same as the number of elements

* each node has a reference to the value stored and a reference to the next
node in the list: item or value, and next

* the end of the list is reached when the next field has the value null
* alinked list must have as instance variable the head of the list

* adding at the end of the linked list is faster if a tail pointer is kept -- O(1)
instead of O(n)

* adding and removing at the front of a linked list is always O(1)

—



Circular and doubly-linked list

* in acircular list, the next field of the last LinkedNode refers
(back) to the head of the list

* in a doubly-linked list, each node has the next reference and
also a reference to the node before it (prev or previous)

* the previous node of the head is null, and the next node of the tail is null

* in a doubly-linked circular list, the tail is the previous node for
the head, and the head is the next node for the tail

* prev and next are never null

—



* aniterator is an object that keeps track of the state of a traversal of a collection

* an iterator is like a bookmark for a book: there can be many bookmarks for a given
book

* more than one of them might be on the same page

* calling the iterator() method of a collection class is the common way to create a new
iterator

* once the iterator exists, calls to hasNext() and next() may continue until there are no
more elements

* or, can repeat calling next() until it throws an exception

examples:

—



Using Iterators: Example 1/3

* calls to hasNext() and next() may continue until there are no more
elements
* for example:
List<E> list = ...
Iterator<E> iter = list.iterator();
while (iter.hasNext ()) {
E variable = iter.next();

// can use "variable" in the loop

}

—



Using Iterators: Example 2/3

e can repeat calling next() until it throws an exception

List<E> list = ...
Iterator<E> iter = list.iterator();
while (true) ({

try {

E variable = iter.next ();
// can use "variable" in the loop
} catch (NoSuchElementException e) {

break;

}

ﬂ



Using Iterators: foreach (Example 3/3)

* as an alternative to explicitly calling the iterator methods,
use the foreach style:

for (E variable: list) {

// can use "variable" in the loop

}

* list mustimplement Iterable<E> (or be an array)

~



Building an Iterator

* for the exam, must understand and be able to implement at least the hasNext ()
and next () methods of LinkedListIterator.java and an iterator for ArraylLists, and
of other simple iterators

* each iterator is its own separate class

* and may be internal to a collection class

* the iterator needs access to the elements of the collection

* perhaps provided to the constructor

* perhaps from the instance variables of the enclosing collection class

* each iterator needs its own variables to keep track of its state, that is, where it is
in the iteration

ﬁ



Invariants

* aninvariant is something the programmer believes to be true about relationships
among the program's variables

* for example: in binary search, if the object we are looking for is in the array, it must be
between indices start..end

* this requires that the array must be sorted using the same comparison operation that is used in the
binary search

* in an object-oriented language such as Java, the most important relationships are
among an object's instance variables (class data fields)

* if a public method is called with the invariant being true, the invariant must still be true
at the end of the call

* aclass invariant must always be true at the end of a public constructor E




* recursion is useful when we have a problem that:

* has an easy solution for some base cases, and

» for all other cases, has a solution that can be expressed in terms of solving a
problem that is closer to the base case.

* the problem that is closer to the base case is often a smaller problem

* e.g., smallervalue of n

* e.qg., linked list shorter by one node

* recursion is a way of thinking as well as a programming technique

* mathematicians often think recursively




recursion examples on linked lists

* the length of a linked list beginning with node is one more than the length of the list beginning with
node.next:

private long listLength (LinkedNode<E> node) {
if (node == null) return 0;
return 1 + listLength (node.next);

}

* adding to or removing from a linked list is easy if we are willing to create new LinkedNodes for the
backbone of the linked list:

private LinkedNode<E> remove (LinkedNode<E> node, int index) {

if (node == null) return null;
if (index == 0) return node.next; // remove this value
return new LinkedNode<E> (node.value, remove (node.next, index - 1));

 called as follows: head = remove (head, index);

ﬁ



runtime analysis

* constant time: linked list insertion or deletion at the front, linked list insertion at the
back if a tail pointer is kept

* amortized constant time for insertion at the end of an array list

* log time if doubling the size of the problem increases the time by a constant: binary
search

* later we will see tree operations that take log time

* linear time: ordered list insertion or deletion, linear search

* quadratic time: removing n elements from the end of a singly-linked list or the front of
an array list

* exponential time if adding one element doubles the time: towers of Hanoi, clear but
inefficient computation of fibonacci numbers

ﬁ



