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Outline

● linked list removal
● recursive linked list code
● different kinds of linked lists:

– singly-linked lists
– circular linked lists
– doubly-linked lists

● looping over collections
● iterators
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Removing the last node in a linked list

● removing the first node in a linked list is easy:
head = head.next;

● removing the last node requires access to the node before the last 
(if any).  Simplified code:
LinkedNode<E> nextToLast = head;

while (nextToLast.next.next != null) {

  nextToLast = nextToLast.next;

}

nextToLast.next = null;
● This takes linear time, even if we keep a tail pointer
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Recursion and Linked Lists

● a linked node is recursively defined: each linked node may 
refer to another linked node
– there are many recursive data structures, a linked list is one of the 

simplest
● the recursive case is that the linked node's next field 

refers to another linked node
● the base case is that the linked node's next field is null
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Recursively computing the length of a linked list

private int computeLength(LinkedNode<E> node) {

  if (node == null) {

    return 0;

  }

  return 1 + computeLength(node.next);

}

● the length of a list identified by a null reference is 0
● the length of a list is one more than the length of the list 

identified by node.next
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Recursively adding to a linked list

private LinkedNode<E> addAtIndex(LinkedNode<E> node, E value, int index) {

  if (node == null) {

    assert(index == 0);

    tail = new LinkedNode<E>(value);

    return tail;

  }

  if (index == 0) {

    return new LinkedNode<E>(value, node);

  }

  node.next = addAtIndex(node.next, value, index – 1);

  return node;

}

● in-class exercise (in groups): call this from the method public void add(int index, E item) {
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Recursively adding to a linked list: duplicating the list

private LinkedNode<E> addAtIndex(LinkedNode<E> node, E value, int index) {

  if (node == null) {

    assert(index == 0);

    tail = new LinkedNode<E>(value);

    return tail;

  }

  if (index == 0) {

    return new LinkedNode<E>(value, node);

  }

  return new LinkedNode<E>(node.item,

                           addAtIndex(node.next, value, index – 1));

}
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Circular Linked Lists

● by convention, the next field of the last node in a linked list has the 
value null

● a different convention suggests storing the value of head in this field
● then a single class variable tail is sufficient:

– it is not necessary to have the head field, since head is the same as tail.next
– computing tail.next is a constant-time operation

● a complete traversal of a circular list can begin from any node, not 
necessarily the head or tail node
– but it is easy to (mistakenly) have list traversal loop forever
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Circular Linked List exercise

● in small groups
● write a toString method that, given a tail reference, 

returns a string containing string representations of all 
the elements of the circular linked list

● in any order
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Doubly-linked lists

● the linked lists so far have the limitation that it is only possible for code to 
follow references in one direction in the list, that is, forward

● node removal requires a reference to the node before the node to be removed
● if each node also keeps a reference to the node before it, both these problems 

can be solved

x
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Nodes for Doubly-Linked Lists

private class DLinkedNode<E> {

  private E item;                // one element

  private DLinkedNode<E> prev;   // two references, one to the node before

  private DLinkedNode<E> next;   // and one to the node after

    

  private DLinkedNode(E value) {

    item = value;

    next = null;

    prev = null;

  }

    

  private DLinkedNode(E value, DLinkedNode<E> prev, DLinkedNode<E> next) {

    item = value;

    this.next = next;

    this.prev = prev;

  }

}
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Doubly-Linked List add

● adding after a given node (node) means updating the previous and next node's 
next and prev references:
   DLinkedNode followingNode = node.next;

   node.next = new DLinkedNode (value, node, node.next);

   followingNode.prev = node.next;

● in-class exercise (alone or with a friend or two): draw the doubly-linked list after 
each of the lines of the above code

● the above code assumes that there is both a previous and next node
● if not, the code needs special cases
● a circular list, if coded correctly, needs fewer special cases
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Doubly-Linked List remove

● removing a given node (node) means updating the node's predecessor's next field, and the node's 
successor's prev field:

   node.prev.next = node.next;

   node.next.prev = node.prev;

● here are some special cases for a linked-list that is not circular:

 if ((node == head) && (head.next == null)) {

   head = null; tail = null;

 } else {

    if (node.prev != null)

       node.prev.next = node.next;

    if (node.next != null)

       node.next.prev = node.prev;

 }
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Looping over the elements of a collection

● sometimes we want do something with all of the elements of a collection
● for example, we might want to print the values
● or we might want to add all the values in a collection of numbers
● we can do a loop with get:

  for (int i = 0; i < List.size(); i++) {

    E element = List.get(i);

    ... // do something with element

  }

● if get takes more than constant time, this is very inefficient: the outer loop is 
repeated List.size times, so if get takes time linear in the list size, the entire 
loop takes time List.size2 or O(n2).
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Efficiently looping over
the elements of a collection

● for a linked list, get takes linear time
● but accessing a list element if we have a reference to the 

node containing the element only takes constant time
● however, it is not safe to let the user program directly 

have access to this reference
● instead, the reference is encapsulated in an object called 

an iterator, which provides a small set of operations
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using Java iterators

List<E> list = …

for (E element: list) {

    …

}

● Java internally re-writes the above loop as:
Iterator<E> it = list.iterator();

while (it.hasNext()) {

    E element = it.next();

    ...

}
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Yes, but what is an iterator?

● an iterator is an object that supports the two methods hasNext() 
and next()

● next() provides access to the elements of a collection
● for example, an iterator for a linked list class would internally 

have a reference to the node containing the next object, here 
called node:
public class LinkedListIterator<E> . . . {

    LinkedNode<E> node;

● the iterator is a different object than the collection
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example

● i1 and i2 are iterators for the same 
collection

● advancing i2 does not affect i1
● next() returns the next element and 

advances the iterator 
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Iterator methods

● a Java iterator only provides two or three operations:
● E next(), which returns the next element, and also advances the 

reference
– advancing the iterator is a side effect of calling next

● boolean hasNext(), which returns whether there is at least one 
more element

● void remove(), which removes the last element returned by next()
– the remove method is optional

● using remove may invalidate any other existing (concurrent) iterators
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Automatic use of iterators

● instead of having to use the while loop to use an iterator, the for loop has 
been specialized to call the iterator
LinkedList<Integer> values = ...

int sum = 0;

for (Integer value: values) {

  sum = sum + value;

}

● Java creates and calls the iterator, but the iterator itself is not visible in 
the code

● the same code can loop over arrays
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Java foreach

● this automated (and invisible) use of iterators with for loops is 
called the Java enhanced for statement or for each statement

● the foreach statement works on any expression that has a 
value that satisfies the Iterable interface

● The Iterable interface requires a method called iterator:
interface Iterable<E> {

  Iterator<E> iterator();  // return a new iterator

}
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Iterator implementation

● a Java iterator may or may not be internal to the collection class
● every Java iterator must have sequential access to the elements of 

the collection
● every Java iterator must have at least one variable to keep track of 

where it is in the traversal, that is, which elements have not yet 
been returned

● See LinkedListIterator.java for a very simple iterator on linked 
lists.

● in-class exercise (everyone together): design the code for the 
iterator() method of the LinkedList class

https://www2.hawaii.edu/~esb/2024fall.ics211/LinkedListIterator.java.html
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ListIterator

● the Java Iterator interface is very general and reasonably 
powerful

● however, sometimes it is useful to be able to move 
backwards and forwards, and add or replace as well as 
remove elements

● the ListIterator interface adds these operations to the 
basic Iterator interface

● it also keeps track of the position and can return the index of 
the next or previous item


