
1

Outline

● equality and comparisons in Java
● sorting
● selection sort
● bubble sort
● insertion sort
● introduction to algorithm analysis

2

Java Equality details for Objects

● four kinds of equality:

● == is true if and only if two references are to the exact same object

– for basic types, if the values are the same, e.g. x == 3 is true if x is an int with value 3

● object1.equals(object2) is true if object1's equals method decides (in its wisdom) that they are the same

● object1.compareTo(object2) is 0 if the compareTo method decides (in its wisdom) that they are the same

– the result is negative if object1 < object2, and greater than 0 if object1 > object2)

● object0.compare(object1, object2) is similar to compareTo, comparing object1 to object2

● the behavior of the last three depends on the implementation:

– ideally, they compare the contents of the object

– ideally they are all consistent with each other

but:

– they may not do what you think

– they may have bugs

3

properties of the equals method

● the equals method should be:
– reflexive: a.equals(a) should always be true
– symmetric: a.equals(b) == b.equals(a)

● both true or both false
– transitive: (a.equals(b) && b.equals(c)) only if a.equals(c)
– consistent: successive identical calls should return the same result
– if a is not null, a.equals(null) should always be false

● the equals method can be overridden for any class
● if equals is not overridden, Object.equals is the same as ==

4

ordering objects in Java

● two Java methods to find out which object is greater and which object is less:
● Comparable<T> interface, specifies the int compareTo(T x) method
● Comparator<T> interface, specifies the int compare(T x1, T x2) method (which

could be static, but isn't – interfaces don’t list static methods)
● if comparing a to b:

– that is, if we are calling x.compareTo(y) or compare(x, y)
– both methods return:

● a value that is < 0 if x < y
● 0 if x equals y
● a value that is > 0 if x > y

– these methods are not part of the Object class, so are not provided by all objects

5

compare and compareTo

● given that signum is the sign function, returning -1 for negative numbers, 0 for zero, and 1 for positive numbers:

● both comparison methods should have the following properties

– symmetric:

Integer.signum(compare(a, b)) == - Integer.signum(compare(b, a))

– transitive: if (((compare(a, b) > 0) && ((compare(b, c) > 0)),

then ((compare(a, c) > 0)

– consistent: if (compare(a, b) == 0), then the sign of (compare(a, c)) should be the same as the sign of (compare(b,
c))

● when sorting, can use either interface

● e.g. class Collections has two different methods for sorting:

– static <T extends Comparable<? super T>> void sort(List<T> list) works when elements are Comparable

– static <T> void sort(List<T> list, Comparator<? super T> c) takes as parameter a Comparator

● compare and compareTo are essentially the same, but some classes only provide one of the two

6

Applications of sorting

● finding duplicate elements in a list or an array
– or eliminating duplicates by making a list of elements, where each element occurs at most

once
● preparing to make future searches more efficient

– dictionary, phone book
● presenting data in an appropriate format, e.g. for printing

– transactions in a bank statement are sorted by date
● comparing two lists to find out which elements are in one, the other, or both
● merging multiple sorted collections into a new sorted collection, with or

without duplicates

7

Sorting with the Java Standard Library

● Java class Arrays has
public static void sort(x[] items);

public static void

 sort(x[] items, int fromIndex, int toIndex);

● for type x being any one of:
● int and all of the basic types except boolean
● Object – the objects must be Comparable
● T – if the last parameter is a Comparator<T>

8

Selection Sort

● start with an unsorted array a
● find the smallest element in the array, at index i
● swap the element at index i with the element at index 0
● now, find the smallest element in 1..a.length-1
● swap the elements at index I’ and at index 1
● now, the sub-array with elements 0..1 is sorted
● now, find the smallest element in 2..a.length – 1

– see animations at https://en.wikipedia.org/wiki/Selection_sort
● in-class exercise (in groups of 2 or 3): write code to implement selection sort

https://en.wikipedia.org/wiki/Selection_sort

9

Bubble Sort

● start with an unsorted array a
● loop through all the elements of array a, swapping any

that are not sorted
● repeat until the array is sorted
● see animations at

https://en.wikipedia.org/wiki/Bubble_sort
● trivia: bubble sort of an array of size n can be done in

parallel on n processors

https://en.wikipedia.org/wiki/Bubble_sort

10

Insertion Sort

● in selection sort, find the smallest element, and put it in the next position
● in insertion sort, take the next element, and put it in the right place
● trivia: card players often use insertion sort to arrange their decks
● the sub-array at the beginning of the array is already sorted, just as in selection

sort
● in selection sort, the next element e is always taken from the next index in the

array
● elements in the sorted part of the array that are greater than e are shifted up one

position, to free the position where element e will be stored
see animations at https://en.wikipedia.org/wiki/Insertion_sort

● in-class exercise (in groups of 2 or 3): write code to implement insertion sort

https://en.wikipedia.org/wiki/Insertion_sort

11

Introduction to Algorithm Analysis:
motivation

● selection sort, bubble sort, and insertion sort all sort an array
● which one of these is better?

– assuming the implementations already exist
● all of these algorithms sort in place, so they all use the same amount

of memory space
● so the only difference may be in the time they take
● but the time depends on both the computing system and the data

– for example, bubble sort is very fast on data that is already sorted, or if sorting
data stored on magnetic tape

12

Introduction to Algorithm Analysis:
analysis

● for each algorithm, we will have a best-case time, a worst-case
time, and sometimes an average-case time

● the time taken for sorting depends on the size of the array:
sorting 1000 elements takes longer than sorting 10 elements

● because computing systems vary, and to keep things simple, all
constant-time operations are assumed to take the same
amount of time
– so this analysis assumes that addition, multiplication, and

comparisons, each take the same, constant time

13

Introduction to Algorithm Analysis:
notation

● If, even in the worst case, an algorithm takes constant time, we say it is O(1)
– for example, the time to access an element of an array is constant, no matter the size of the array

● If the worst case of an algorithm takes time proportional to the size of the input, it is O(n),
with n the size of the input

– in the worst case, finding out whether an unsorted array of integers contains a specific number (called linear
search) takes time proportional to the size of the array

– linear search in an array of 1,000,000 elements should be twice as fast as in an array of 2,000,000 elements

● If an algorithm in the worst case takes time proportional to the square of n, we say it is O(n2)
● We will also see O(log n), O(n log n), O(n), and so on√

● O() always looks at the worst case as n gets very large
– unless we are specifically looking for the best case or average case

