
1

Outline

● reminder: invariants
● Big-O Analysis of array list efficiency
● Linked Lists

2

Reminder: Invariants

● a useful property of a program that the programmer knows and that is
always true, is an invariant
– in the ArrayList implementation one invariant is that the elements of data from

0..size-1 are all of type E
– the invariant must be true whenever a public method is called and when a public

method returns, but may not be true in the middle of a method body
● every invariant must hold by the end of each constructor, that is, constructors must

establish all the invariants
– for example, the ArrayList class has the invariant that size <= data.length
– in the ArrayList add, we may change size before we assign the new value: the

invariant is temporarily broken when size is changed, then restored before the
method completes

3

Reminder: Lists

● a list holds a sequence of values
● each value is at a specific index in the list
● we can insert items into a list and remove items from a list

– insert or remove at the beginning, at the end, or at a specific index

4

Linked Lists
and comparison with Array Lists

● in an array list, the elements of the list are stored in the array
● if more elements are needed, the array is replaced by a bigger

array
● that means the elements are stored in a single object (an array)

whose size may be different depending on the number of elements
● instead, consider storing the elements into a variable number of

fixed-size objects
● where each object can only store one element
● there will be as many such objects as elements in the list

5

Linked List Nodes

● objects used to store list elements are called Nodes
● a Linked List has zero or more nodes

– so there is a LinkedNode class and a LinkedList class
● how to keep track of all these nodes?
● each of the nodes has a reference (link) to another node

head

● the LinkedList class has one variable to keep track of the first element, the head of the
linked list

LinkedList

LinkedNodeLinkedNode

nextnext

6

Linked Lists Nodes in Java

private class LinkedNode<E> {

 private E item; // value in this node

 private LinkedNode<E> next; // reference to the next node, or null

 private LinkedNode(E value) { // constructor

 item = value;

 next = null; // last node in the linked list

 }

 private LinkedNode(E value, LinkedNode<E> reference) { // constructor

 item = value;

 next = reference;

 }

}

7

Linked Lists Details

● each node has two data fields: an element value, and a
reference to the next node

● the reference to the next node is a pointer to the next
node:
– the next reference of the last node in the linked list must be null
– every other next reference in the linked list must refer to the next

node

8

Linked Lists Implementation:
class structure

● LinkedNode is a private class inside LinkedList
● a private class is local to the enclosing (parent) class
● all data fields (meaning, all instance variables) in the

private class are accessible to the code in the parent class
– even private instance variables are accessible to the code in the

parent class!

9

LinkedList Implementation

● the linked list class only really needs one class variable: a
reference to the start of the list, conventionally known as
the head of the list

● the book also has a size class variable, which can be useful
for error checking

● my implementation (and most other implementations)
also keeps a reference to the last node in the linked list,
the tail of the list

10

In-Class Exercises

● for a linked list:
● what is the run-time performance of add(E)?
● what is the run-time performance of add(int, E)?
● what is the run-time performance of remove(), which

removes the head of the linked list?
● what is the run-time performance of remove(int), which

removes an element at an arbitrary position?

