
1

Outline

● List interface
● Array lists

2

Lists

● A List is similar to an array, but may:

– grow or shrink in size
– insert or delete elements at a given position

– in an array, can only set the value at a given position, inserting or deleting requires a shift
● there are many lists, usually categorized by how they are implemented:

– ArrayLists are implemented using arrays (Vectors are similar)
– LinkedLists are implemented using links (references, pointers) to objects

● All lists extend the abstract class AbstractList, and implement the List interface

– AbstractList implements the List interface, so all its subclasses do too
● lists also have operations to search for elements, and to do something with every element of the list

3

Generic Interfaces

● a list can store objects of any one object type:
– a list of strings: List<String>
– a list of integers: List<Integer>

● this is the Integer object, and not the int basic type
– a list of objects: List<Object>

● the notation "interface List<E> { " indicates that the list interface is
parametrized over the type E of objects it can store

● in this case, E is a type parameter
– logically, we have a collection of interfaces, one for each possible class
– E can only be instantiated to an object type (not a basic type)

4

Generic Classes

● Java provides generic classes and generic interfaces
● generic classes and generic interfaces use the same notation
public class ThisClass<E> { ...

– collection classes, which can store objects of any type, are often
generic

● the Java compiler can check that the type parameter is the
same for every use of a variable: for example, that all
operations involving a List<String> actually store and
retrieve strings

5

List Interface

public interface List<E> extends Collection<E> {

 E get(int index); // returns object at position

 E set(int index, E element); // returns old value

 int indexOf(Object o);// returns index of object

 int size(); // returns # of elements

 boolean add(E element); // add at the end of list

 void add(int index, E element); // add at position

 E remove(int index); // removes object at position

 ...

}

6

AbstractList

● AbstractList<E> is a generic abstract class
● AbstractList<E> provides all the methods specified in the

List<E> interface
– the subclass must provide the methods add, get, remove, set, size

● the method implementations in AbstractList<E> are
functional but may not be optimal

7

ArrayList<E>

● an array list uses an array to store the objects in the list
● the object at position i in the list is stored at array index i
● if the array needs to grow, a bigger array is allocated, and data is

copied from the old array to the new array
● reallocating is an expensive operation: it takes time proportional

to the total size of the collection, O(n) where n is the size of the list
● in general, the underlying array may have more elements than the

collection
– for example, a collection with 22 elements may be stored in an array with 39

elements
– an array list always has a capacity (39 in this example) >= to its size (22)

8

Implementation of ArrayList<E>

● an object of type ArrayList<E> has two instance variables:
– one that is an array of objects of type E
– another that keeps track of the size

● the capacity is simply the array length
public class ArrayList<E> {

 protected E [] data;

 protected int size;

 public int capacity() {

 return data.length;

 }

9

ArrayList<E> constructor

@SuppressWarnings("unchecked")
public ArrayList() {
 data = (E []) new Object [16];
}

● Java refuses to allocate an array with a type that is not know at
compile time

● @SuppressWarnings("unchecked") is used to suppress warnings
about the type conversion (from Object[] to E[]) not being
checked

10

Alternative implementation of ArrayList<E>

● the last example used an array of elements of type E
● we could instead use an array of elements of type Object
● and only cast the value when get is called:

protected Object[] data;

. . .

@SuppressWarnings("unchecked")

public E get(int index) {

 if (index < size) {

 return (E)data[index];

 } // else throw exception

}

11

Type safety of this alternative implementation of
ArrayList<E>

● if the object in the array does not have type E, the cast in the code of
get will fail

● all the objects added to the array are necessarily of type E, because
that is the only type that can be a parameter to add or set

● the compiler doesn’t know that the objects are of type E, so we
suppress the warning
– the cast is safe, even though the compiler doesn’t know that it is safe

● a useful property of a program that the programmer knows and that
is always true, is an invariant

12

Invariants

● a useful property of a program that the programmer knows and
that is always true, is an invariant
– here the invariant is that: non-null elements of data from 0..size-1 are all of

type E
– the invariant must be true whenever a public method is called and whenever a

public method returns, but may not be true in the middle of a method body
– constructors must establish all invariants
– for example, the ArrayList class has the invariant that size <= data.length
– within the ArrayList add, we may change size before we assign the new value:

the invariant is temporarily broken when size is changed, then restored before
the method completes

13

ArrayList<E> adding at the end:
simple case

● if there is room, adding at the end is easy:
public boolean add(E value) {

 data[size] = value;

 size++;

 return true;

}

14

ArrayList<E> adding at the end:
making room

● we may need to make room by reallocating the array:
public boolean add(E value) {

 if (size == data.length) {

 data = Arrays.copyOf(data, data.length * 2);

 }

 data [size] = value;

 size++;

 return true;

}

● doubling the size of the array means we can add data.length more elements in constant
time before needing to resize again – resizing takes O(data.length)

15

ArrayList<E> adding in the middle

● In-class exercise: (groups of 2-4), implement this method (below) to
add a value somewhere in the middle of the array. Assume that
the index is valid and that there is room in the array, i.e. index >=
0 and

index < data.length - 1.
● Your code must shift all the data that is at or after index, so there

is room for one new element
● only use a for loop, not methods from other classes

public void add(int index, E value) {

16

In-class exercise on Big-O

● what is the big O for the Array list methods:
– add

● add at the end
● add in the middle or at the front

– remove:
● remove from the end
● remove from the middle or from the front

