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Outline

● algorithm runtime analysis
● big-O notation
● figuring out big-O
● figuring out big-O for sorting algorithms
● big-O analysis in practice
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Algorithm Analysis Review: motivation

● selection sort, bubble sort, and insertion sort all sort an array
● which one of these is better?

– assuming the implementations already exist
● all of these algorithms sort in place, so they all use the same amount 

of memory space
● so the only difference may be in the time they take
● but the time depends on both the computing system and the data

– for example, bubble sort is very fast on data that is already sorted, or if sorting 
data stored on magnetic tape
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Algorithm Analysis Review: methods

● for each algorithm, we will have a best-case time, a worst-case 
time, and sometimes an average-case time

● the time taken for sorting depends on the size of the array: 
sorting 2n elements takes longer than sorting n elements

● because computing systems vary (and for simplicity), all 
constant-time operations are assumed to take the same 
amount of time
– e.g. addition, multiplication, swapping elements, comparisons, each 

take constant time
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Algorithm Analysis Review: notation

● If, even in the worst case, an algorithm takes constant time, we say it is O(1)
– for example, the time to access an element of an array is constant, no matter the size of 

the array
● If the worst case of an algorithm takes time proportional to the size of the 

input (conventionally, n), it is O(n)
– in the worst case, searching for a specific number in unsorted array of integers takes 

time proportional to the size of the array
● If an algorithm in the worst case takes time proportional to the square of n, 

we say it is O(n2)
● We will also see O(log n), O(n log n), O( n), and so on√
● O() always looks at the worst case as n gets very large
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Big-O Examples

● in general, doing a fixed number of things is O(1)
● an algorithm to multiply all the odd numbers from 3..n takes time O(n). Here, n is the 

input to the algorithm and also the "size" of the problem
● searching through an array of n items in sequence is also O(n). Here, n is the size of the 

problem but the input to the algorithm are the array and the element to search for (the 
value n is not the input)

● dividing something into two nearly equal parts can only be done O(log n) times, 
logarithmic

– e.g. searching through a list of n items in sorted order, such as in a phone book, can be O(log n)
● going through every element of an input is O(n), linear
● comparing every element of an input to every other element is O(n2), quadratic
● trying every combination of n inputs is O(2n), exponential
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Common Functions used with Big-O

● common f(n) include:
– O(1) or constant time
– O(log n) or logarithmic time:

since log2 n = k1 * ln n = k2 * log10 n, any logarithm will do
– O(n) or linear time
– O(n log n), where a (worst-case) logarithmic operation is repeated at most n times
– O(n2) or quadratic time

● finding all pairs of matching items in an unsorted list of n items is O(n2)
– O(n3) or cubic
– O(2n) or exponential

● hint: log10(n) is approximately the number of digits in n: log10(1000) is 3

log2(n) is approximately the number of bits in n: log2 of 256 (binary 1 0000 0000) is 8
● in-class exercise (everyone together): what is the value of f(n) for each of the above when n = 10? when n = 

100?
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Big-O Growth with n

● O(1) means: changing n -- run time is unchanged. For example, array 
access time is independent of array size

● O(log n) means: doubling n -- the run time increases by a constant 
factor

● O(n) means: doubling n -- the run time doubles. For example, looking 
at every element of an array takes time proportional to the array size

● O(n log n) grows faster than O(n), but not nearly as fast as O(n2)
● O(n2) means: doubling n -- the run time increases by a factor of four
● O(2n) means: increasing n by just 1 -- the run time doubles (or is 

multiplied by some constant factor)
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Figuring out Big-O

● suppose the number of operations required for an algorithm is
2n + n3 + n log n + 13

● as n increases, the 2n term will grow the fastest: k * n3 < 2n for sufficiently 
large n, no matter how large k is

● ignoring slower-growing terms, this algorithm is O(2n)
● constant factors can likewise be ignored: O(1) = O(5) = O(17), usually written 

as O(1). Similarly, O(n/3) = O(n)
● sometimes the problem size is expressed as a combination of numbers, for 

example the time to search a room of size m by n is proportional to m * n, and 
search algorithms take time O(m * n)

● big O always reflects the worst case
– unless we specify “average case” or “best case” big-O
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Example: Analyzing Bubble Sort

● Sort an array of size n
● The outer loop repeats until the array is sorted

– best case: only one outer loop (if the array is already sorted)
– worst case: in each outer loop, the smallest element moves one position towards the front of the 

array. If the smallest element was at the end of the array, the algorithm requires n outer loops
● The inner loop compares all pairs in the array, so always takes linear time, O(n)
● n inner loops for each of n outer loops means bubble sort is O(n * n) = O(n2)
● There is an optimization of bubble sort which considers that on the i-th outer loop, the 

last i elements of the array are already sorted, so the inner loop can stop at index n – i
● In-class exercise (initially in groups of up to 4, then in-class discussion with the entire 

class):
– what is the big-O runtime of bubble sort if the i-th inner loop stops at index n – i?
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Friedrich Gauss:
summing successive integers

● Friedrich Gauss is a famous mathematician, with contributions in many different fields including statistics 
(a Gaussian curve)

● One formula for which he is well-known is very simple, and, the story goes, he figured it out in school

● what is the sum of all the integers from 1 to n?

– 1 + 2 = 3

– 1 + 2 + 3 = 6

– 1 + 2 + 3 + 4 = 10

– 1 + 2 + 3 + . . . + n = ?

● hint: consider how the result relates to the value (n + 1) * n = n2 + n

● So if an outer loop has n iterations, and an inner loop has i iterations (or n – i iterations), the number of 
iterations of the inner loop is 1 + 2 + 3 + . . . + n, and so O(n2 + n) = O(n2)

● This information is useful in analyzing the optimized bubble sort, as well as selection sort and insertion sort
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Big-O analysis in practice: 1/3

n = 100000;  // one hundred thousand

startTimer();

for (int i = 0; i < n; i++) {

    count++;

}

stopTimerAndPrint("example 1", n);

● how much longer than the first loop does the next loop take?
n = 10000000;  // ten million

startTimer();

for (int i = 0; i < n; i++) {

    count++;

}

stopTimerAndPrint("example 1", n);
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Big-O analysis in practice: 2/3

n = 100000;  // one hundred thousand

startTimer();

for (int i = 0; i < n; i++) {

    count++;

}

stopTimerAndPrint("example 1", n);

● how much longer than the first loop does the next loop take?
n = 100000000; // one hundred million

startTimer();

for (int i = 0; i < n; i++) {

    count++;

}

stopTimerAndPrint("example 1", n);
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Big-O analysis in practice: 3/3

n = 1000;

startTimer();

for (int i = 0; i < n; i++) {

  for (int j = 0; j < n; j++) {

    count++;

  }

}

stopTimerAndPrint("example 2", n);

n = 10000;

startTimer();

for (int i = 0; i < n; i++) {

  for (int j = 0; j < n; j++) {

    count++;

  }

}

stopTimerAndPrint("example 2", n);

● how much longer than the first loop does the second loop take?


