Outline: exam review

* jterators (also in homework 8)

* the collection interface

* recursive linked list methods (homework 9)

e stacks (also in homework 10)

* infix, prefix, and postfix expressions, expression trees
* queues

* trees, including binary search trees (also in homework 11)



exam review

* format similar to last exam

* material from lecture notes (including in-class exercises), book, assignments,
quizzes

* for the book, all the material in Chapters 2.10, 4, 6.1-6.3 and 6.5.

* must also be familiar with the material presented before exams 1 and 2, i.e. review
the material (and the exams, quizzes, and homework assignments)

* classes and interfaces, runtime analysis, binary search, recursion, lists, iterators,
parametrized classes, invariants, algorithm runtime analysis

* review all the code posted on the course web page. Understand this code well
enough to be able to code similar programs

* the actual question may ask for something similar, and the corresponding code may be
the same or different.



an iterator is an object that implements the Iterator interface

with methods E next () and boolean hasNext ()
iterators are created by calling the iterator () method of an Tterable object
calling next () repeatedly returns all the objects in the collection

a foreach loop transparently/implicitly/invisibly calls iterator () to create an iterator, and
the next () and hasNext () methods to get successive objects:

for (E value: collection) { // the keyword is for, not foreach
// can use value in the body of the loop

}

a ListIterator can go backwards as well as forwards



collection interface

e parametrized interface with many implementing classes

» AbstractCollection/List/SequentialList make it easier to implement
specific types of collections

* many sub-interfaces, including Set, Stack, Queue, Deque

e sets do not add duplicate elements

* equality is determined by the .equals method
* Map<K, V> stores objects of type V (value) as indexed by objects of
type K (key)
* a map must always store both the key and its value



recursive linked list methods

e generally:

* have at least one parameter called node of type LinkedNode<E>

* base case is when node == null
- but the base case might be different, or there could be multiple base cases
* recursive case takes node.next as parameter

* In most cases, return value contributes to the result

* in which case the return type should be the type of the return value

e can do work before the recursive call

* e.g. check for base cases

 and/or after the recursive call

e e.g.add 1 to the result



stacks are a fundamental data structure in computer science,
used:

* in the implementation of method calls,
* in the evaluation of arithmetic expressions, and
* In checking correctness of parentheses

a stack is a LIFO data structure where only the top element is
accessible

* pushing a number of elements in order, pops them in reverse order
push (E value) adds its parameter to the stack
pop () removes and returns the top element of the stack



infix, prefix, postfix expressions, and expression trees

* normal infix expressions sometimes require precedence, associativity, and parentheses to correctly
show which operations are evaluated first

25-(2+3)*4+7

e parentheses evaluate 2+3 first, precedence evaluates * next, left-to-right associativity evaluates — before +

* in a prefix expression, an operator is followed by two operands, each of which might in turn be a
prefix expression

+-25%+2347

* in a postfix expression, two operands (each of which might be postfix expressions) are followed by
an operator

2523+4%-7+

* must know (from book section 4.4) algorithms to evaluate postfix expressions using stacks



tree nomenclature: root, child, parent, leaf, interior node,
level/height/depth of a node, height/depth of a tree

complete binary trees and perfect binary trees

expression trees

binary search trees

trees are a recursive data structure suitable for recursive methods




binary search trees

tree iIs sorted so all values less than the value in a node are In the

left subtree and all values greater than the value in the node are
In the right subtree

find, add, remove, take time O(depth)
unless the tree Is guaranteed to be balanced, O(depth) is O(n)
find, add, and remove can be implemented recursively




exam review

* make sure your answer addresses the guestion

* reminders for coding questions:

* read and understand the entire question
e write clearly

* only call outside methods if it is clearly appropriate
* a guestion asking for runtime is asking for worst-case runtime




