
1

Outline: exam review

● iterators (also in homework 8)
● the collection interface
● recursive linked list methods (homework 9)
● stacks (also in homework 10)
● infix, prefix, and postfix expressions, expression trees
● queues
● trees, including binary search trees (also in homework 11)

2

exam review

● format similar to last exam
● material from lecture notes (including in-class exercises), book, assignments,

quizzes
● for the book, all the material in Chapters 2.10, 4, 6.1-6.3 and 6.5.
● must also be familiar with the material presented before exams 1 and 2, i.e. review

the material (and the exams, quizzes, and homework assignments)
● classes and interfaces, runtime analysis, binary search, recursion, lists, iterators,

parametrized classes, invariants, algorithm runtime analysis
● review all the code posted on the course web page. Understand this code well

enough to be able to code similar programs
● the actual question may ask for something similar, and the corresponding code may be

the same or different.

3

iterators

● an iterator is an object that implements the Iterator interface

● with methods E next() and boolean hasNext()

● iterators are created by calling the iterator() method of an Iterable object

● calling next() repeatedly returns all the objects in the collection

● a foreach loop transparently/implicitly/invisibly calls iterator() to create an iterator, and
the next() and hasNext() methods to get successive objects:

for (E value: collection) { // the keyword is for, not foreach

 // can use value in the body of the loop

}

● a ListIterator can go backwards as well as forwards

4

collection interface

● parametrized interface with many implementing classes

● AbstractCollection/List/SequentialList make it easier to implement
specific types of collections

● many sub-interfaces, including Set, Stack, Queue, Deque

● sets do not add duplicate elements

● equality is determined by the .equals method
● Map<K, V> stores objects of type V (value) as indexed by objects of

type K (key)

● a map must always store both the key and its value
●

5

recursive linked list methods

● generally:

● have at least one parameter called node of type LinkedNode<E>

● base case is when node == null

– but the base case might be different, or there could be multiple base cases

● recursive case takes node.next as parameter

● in most cases, return value contributes to the result

● in which case the return type should be the type of the return value

● can do work before the recursive call

● e.g. check for base cases

● and/or after the recursive call

● e.g. add 1 to the result

6

stacks

● stacks are a fundamental data structure in computer science,
used:

● in the implementation of method calls,
● in the evaluation of arithmetic expressions, and
● in checking correctness of parentheses

● a stack is a LIFO data structure where only the top element is
accessible

● pushing a number of elements in order, pops them in reverse order
● push(E value) adds its parameter to the stack
● pop() removes and returns the top element of the stack

7

infix, prefix, postfix expressions, and expression trees

● normal infix expressions sometimes require precedence, associativity, and parentheses to correctly
show which operations are evaluated first

25 - (2 + 3) * 4 + 7

● parentheses evaluate 2+3 first, precedence evaluates * next, left-to-right associativity evaluates – before +

● in a prefix expression, an operator is followed by two operands, each of which might in turn be a
prefix expression

+ - 25 * + 2 3 4 7

● in a postfix expression, two operands (each of which might be postfix expressions) are followed by
an operator

25 2 3 + 4 * - 7 +

● must know (from book section 4.4) algorithms to evaluate postfix expressions using stacks

8

trees

● tree nomenclature: root, child, parent, leaf, interior node,
level/height/depth of a node, height/depth of a tree

● complete binary trees and perfect binary trees

● expression trees

● binary search trees

● trees are a recursive data structure suitable for recursive methods

9

binary search trees

● tree is sorted so all values less than the value in a node are in the
left subtree and all values greater than the value in the node are
in the right subtree

● find, add, remove, take time O(depth)
● unless the tree is guaranteed to be balanced, O(depth) is O(n)
● find, add, and remove can be implemented recursively

10

exam review

● make sure your answer addresses the question

● reminders for coding questions:
● read and understand the entire question
● write clearly
● only call outside methods if it is clearly appropriate

● a question asking for runtime is asking for worst-case runtime

