Outline

- trees
- expression trees
- binary tree traversal
- binary search trees
- binary search tree algorithms: add, remove, traverse
- binary node class

trees

- imagine having to store, in an organized fashion, all the descendants of a given person
- as in this family tree:

image by Derrick Coetzee, in entry "family tree" in Wikipedia

trees in computer science

trees can hold any kind of data, even numbers:
3
10
1
6
7
1

image by Derrick Coetzee, in entry "Search Tree" in Wikipedia

- a node in a tree is similar to a node in a linked list, except:
 - a linked list node has a reference to zero or one link nodes, whereas
 - a tree node has a reference to zero or more other tree nodes
- later we will consider how trees are implemented

tree properties

- a tree has one <u>root</u> node, from which all other nodes can be reached by following links
- each node in a tree, except the root node, has exactly one parent
- each node in a tree can have zero or more <u>children</u>
- the other children of a node's parent are the node's siblings
- nodes are in a hierarchical relationship:
 - node X is an ancestor of another node Y, or
 - node X is a descendant of another node Y, or
 - node X is on a different branch than node Y
- nodes without children are <u>leaf nodes</u>
- nodes with children and a parent are interior nodes

tree properties exercise

in-class exercise (everyone together): identify the

- root node
- interior nodes
- leaf nodes
- parent of node 6
- children of node 6
- ancestors of node 9
- descendants of node 7

image by Derrick Coetzee, in entry "Tree (data structure)" in Wikipedia

more tree definitions

- a <u>subtree</u> is a node with all its descendants
- the level of a node is the number of its ancestors (including itself), so e.g. the root is always at level 1:
 - the children of the root are at level 2
 - their children are at level 3
 - the children of a node at level n are at level n+1
- sometimes the word <u>depth</u> is used instead of level
 - sometimes the level or depth does not include the node itself, so the root is at level 0
- the <u>height</u> of a tree is the maximum depth of any node in the tree
 - this may also be called the depth of the tree
- in a <u>binary tree</u> each node has at most two children
- likewise, in a <u>ternary tree</u> each node has at most three children

types of binary trees

 in a <u>balanced binary tree</u> the height of each subtree of every node differs by at most one

(this is a recursive definition)

there are also other definitions of balanced binary trees

- in an <u>expression tree</u>, each internal node contains an operator, and each leaf node is an operand (value)
 - subtrees are evaluated first, yielding a value. Once all its children have been evaluated, we can evaluate a node
- in a <u>binary search tree</u> each node has a value greater than every node in its left subtree, and less than every node in its right subtree.

more types of binary trees

- a <u>perfect binary tree</u> of height n has 2ⁿ 1 nodes, of which 2ⁿ⁻¹ are leaves
- a <u>complete binary tree</u> is a perfect binary tree up to the last level. All the leaves at the lowest level are as far to the left as possible
- in a <u>full binary tree</u>, each node has either 0 or two children (non-leaf nodes are full)
- in a <u>Huffman tree</u>, each internal node has two children. Each leaf node represents something to encode, such as a letter. The binary string to encode the letter is found by going down the tree from the root to the leaf. Each time we go left contributes a 0 bit to the code, and each time we go right contributes a 1 bit to the code.

- perfect binary trees and complete binary trees are always balanced
- a Huffman tree is always a full binary tree

expression trees

- an expression tree is a tree where:
 - every node with children is an operator
 - every leaf node is an operand
- each operator operates on the values of its children
- an expression tree corresponding

binary tree traversals

- if we want to visit each node in a binary tree in <u>depth-first order</u>, we have a choice of how to do it:
 - preorder traversal: visit the root node, then recursively visit the left subtree, then the right subtree
 - inorder traversal: recursively visit the left subtree, then visit the root node, then recursively visit the right subtree
 - postorder traversal: recursively visit the left subtree, then the right subtree, then the root node
- what does "visit a node" mean?
 - could mean printing the value
 - could mean saving the value in a data structure

binary tree traversal exercises

• do pre-order, inorder, and post-order traversals of these trees

expression tree traversal exercise

 do a pre-order, in-order, and post-order traversal of this tree

binary search trees

• in-class exercise: how do we know this is a binary search tree?

image by Derrick Coetzee and Booyabazooka, in entry "Binary search tree" in Wikipedia

binary search in binary search trees

image by Derrick Coetzee and Booyabazooka, in entry "Binary search tree" in Wikipedia

- binary search (for value x) is now much easier:
 - if the value in the root is x, we are done
 - otherwise, if x < the value in the root, search in the left subtree
 - otherwise, x > the value in the root, so search in the right subtree
 - if the subtree we need to search is empty, x is not in the tree
- note this is a recursive definition
- in-class exercise: what is the runtime of this algorithm?

binary search tree properties

- adding, finding (get), or removing a node are all O(depth), which, if the tree is balanced, is O(log n), with n the number of nodes
 - so binary search in a binary search tree is O(n) unless the tree is balanced
 - in a sorted array, binary search is always O(log n), inserting is O(n)
- binary search trees are an efficient way to search data and to sort data, as long as the trees remain balanced
- an unbalanced binary tree might look like a linked list
- in-class exercise: what is the runtime of the get method when the tree is not balanced?
- data can be identified with a unique key
- in-class exercise: add everyone's name to a search tree (in groups of five-ten people)
- in-class exercise: is the resulting tree balanced?

binary search tree add operation

- if key is less than the key of the current node, recursively add to the left subtree
- if key is greater than the key of the current node, recursively add to the right subtree
- otherwise, add at this node:
 - if there is no current node, create one and return it
 - if there is a current node, replace its contents with the new contents
- this assumes:
 - the method returns a new root for the new (sub)tree with the desired value inserted
 - the caller of this method knows what to do with the new root
- in-class exercise: create a new binary tree using as keys the following letters, in the order given: "hello world". These keys each carry the value 1, 2, 3, 4, 5, 6, 7 8, 9, 10, 11

binary search tree remove operation

- find node with the given key
- if the node is a leaf node, delete it, return null
- if the node only has a left subtree, return the left subtree
- if the node only has a right subtree, return the right subtree
- if the node has both subtrees, must replace it with another node that fits in the slot

removing a node that has both subtrees

- the rightmost (largest-valued) node in the left subtree can be put in place of the current node without altering the sorted property
- likewise, the leftmost (smallest-valued) node in the right subtree can be put in place of the current node
- that node might have a left (right) subtree, which can be used in its old position
- the rightmost node in the left subtree is the in-order predecessor of the current node
- the leftmost node in the right subtree is the in-order successor of the current node
- so either can be used

node removal exercises

- in-class exercise (everyone together): delete node 17 from this tree
- in-class exercise (individually): delete node 14 from the original tree
- in-class exercise (individually): delete node 31 from the original tree

BinaryNode class

- a singly-linked list node has (at most) one reference to another node
- a binary tree node has (at most) two references to other nodes
- for example, see BinaryNode.java
- both types of nodes also need a reference to the locally stored value (possibly including a key)
- data fields are item, left, right
- methods include constructors, accessor methods, mutator methods, toString
- test program builds small tree, tests the methods

BinaryNode exercises

- in-class exercise: write a recursive static method to print in postorder a tree, given its root
- in-class exercise: build the following tree using the methods from class BinaryNode
 +

