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Outline

● trees
● expression trees
● binary tree traversal
● binary search trees
● binary search tree algorithms: add, remove, traverse
● binary node class
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● imagine having to store, in an organized fashion, all the descendants of a given 
person

● as in this family tree:

image by Derrick Coetzee, in entry “family tree” in Wikipedia

trees
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trees in computer science

● trees can hold any kind of

data, even numbers: 

                                      image by Derrick Coetzee, in entry “Search Tree” in Wikipedia

●  a node in a tree is similar to a node in a linked list, except:

● a linked list node has a reference to zero or one link nodes, whereas

● a tree node has a reference to zero or more other tree nodes

● later we will consider how trees are implemented
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tree properties

● a tree has one root node, from which all other nodes can be reached by following links

● each node in a tree, except the root node, has exactly one parent

● each node in a tree can have zero or more children

● the other children of a node's parent are the node's siblings

● nodes are in a hierarchical relationship:

● node X is an ancestor of another node Y, or

● node X is a descendant of another node Y, or

● node X is on a different branch than node Y

● nodes without children are leaf nodes

● nodes with children and a parent are interior nodes
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tree properties exercise

● in-class exercise (everyone together): identify the

● root node

● interior nodes

● leaf nodes

● parent of node 6

● children of node 6                                      image by Derrick Coetzee, in entry “Tree (data structure)” in Wikipedia

● ancestors of node 9

● descendants of node 7
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more tree definitions

● a subtree is a node with all its descendants

● the level of a node is the number of its ancestors (including itself), so e.g. the root is always at level 1:

● the children of the root are at level 2

● their children are at level 3

● the children of a node at level n are at level n+1 

● sometimes the word depth is used instead of level

● sometimes the level or depth does not include the node itself, so the root is at level 0

● the height of a tree is the maximum depth of any node in the tree

● this may also be called the depth of the tree

● in a binary tree each node has at most two children

● likewise, in a ternary tree each node has at most three children 



7

types of binary trees

● in a balanced binary tree the height of each subtree of every node 
differs by at most one

(this is a recursive definition)

there are also other definitions of balanced binary trees

● in an expression tree, each internal node contains an operator, and 
each leaf node is an operand (value)

● subtrees are evaluated first, yielding a value. Once all its children have 
been evaluated, we can evaluate a node

● in a binary search tree each node has a value greater than every 
node in its left subtree, and less than every node in its right subtree
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more types of binary trees

● a perfect binary tree of height n has 2n - 1 nodes, of which 2n - 1 are leaves

● a complete binary tree is a perfect binary tree up to the last level. All the leaves at the lowest 
level are as far to the left as possible

● in a full binary tree, each node has either 0 or two children (non-leaf nodes are full)

● in a Huffman tree, each internal node has two children. Each leaf node represents something 
to encode, such as a letter. The binary string to encode the letter is found by going down the 
tree from the root to the leaf. Each time we go left contributes a 0 bit to the code, and each 
time we go right contributes a 1 bit to the code. 

● perfect binary trees and complete binary trees are always balanced

● a Huffman tree is always a full binary tree
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expression trees

● an expression tree is a tree 
where:

● every node with children is an 
operator

● every leaf node is an operand
● each operator operates on the 

values of its children
● an expression tree 

corresponding

to ((5 + z) / -8) * 4 ^ 2):
                                 by Abloomfi/wikipedia, © cc by-sa
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binary tree traversals

● if we want to visit each node in a binary tree in depth-first order, we have a 
choice of how to do it:

● preorder traversal: visit the root node, then recursively visit the left subtree, then the 
right subtree

● inorder traversal: recursively visit the left subtree, then visit the root node, then 
recursively visit the right subtree

● postorder traversal: recursively visit the left subtree, then the right subtree, then the 
root node

● what does “visit a node” mean?

● could mean printing the value
● could mean saving the value in a data structure
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binary tree traversal exercises

● do pre-order, inorder, and post-order traversals of these trees
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expression tree traversal exercise

● do a pre-order, in-order, and

post-order traversal of this tree
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binary search trees

● in-class exercise: how do we know this is a binary search tree?

image by Derrick Coetzee and Booyabazooka, in entry “Binary search tree" in 
Wikipedia
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binary search in binary search trees

                                                                    image by Derrick Coetzee and Booyabazooka, in entry “Binary search tree" in Wikipedia

● binary search (for value x) is now much easier:

● if the value in the root is x, we are done

● otherwise, if x < the value in the root, search in the left subtree

● otherwise, x > the value in the root, so search in the right subtree

● if the subtree we need to search is empty, x is not in the tree

● note this is a recursive definition

● in-class exercise: what is the runtime of this algorithm?
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binary search tree properties

● adding, finding (get), or removing a node are all O(depth), which, if the tree is balanced, is O(log n), 
with n the number of nodes

● so binary search in a binary search tree is O(n) unless the tree is balanced

● in a sorted array, binary search is always O(log n), inserting is O(n)

● binary search trees are an efficient way to search data and to sort data, as long as the trees remain 
balanced

● an unbalanced binary tree might look like a linked list

● in-class exercise: what is the runtime of the get method when the tree is not balanced?

● data can be identified with a unique key

● in-class exercise: add everyone's name to a search tree (in groups of five-ten people)

● in-class exercise: is the resulting tree balanced?
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binary search tree add operation

● if key is less than the key of the current node, recursively add to the left subtree
● if key is greater than the key of the current node, recursively add to the right subtree
● otherwise, add at this node:

● if there is no current node, create one and return it
●  if there is a current node, replace its contents with the new contents 

● this assumes:
● the method returns a new root for the new (sub)tree with the desired value inserted
● the caller of this method knows what to do with the new root 

● in-class exercise: create a new binary tree using as keys the following letters, in the 
order given: "hello world". These keys each carry the value 1, 2, 3, 4, 5, 6, 7 8, 9, 
10, 11
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binary search tree remove operation

● find node with the given key

● if the node is a leaf node, delete it, return null

● if the node only has a left subtree, return the left subtree

● if the node only has a right subtree, return the right subtree

● if the node has both subtrees, must replace it with another node 
that fits in the slot 



18

removing a node that has both subtrees

● the rightmost (largest-valued) node in the left subtree can be put in place of 
the current node without altering the sorted property

● likewise, the leftmost (smallest-valued) node in the right subtree can be put 
in place of the current node

● that node might have a left (right) subtree, which can be used in its old 
position

● the rightmost node in the left subtree is the in-order predecessor of the 
current node

● the leftmost node in the right subtree is the in-order successor of the 
current node

● so either can be used
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node removal exercises

● in-class exercise (everyone together): delete node 17 from this tree

● in-class exercise (individually): delete node 14 from the original tree

● in-class exercise (individually): delete node 31 from the original tree 
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BinaryNode class

● a singly-linked list node has (at most) one reference to another node

● a binary tree node has (at most) two references to other nodes

● for example, see BinaryNode.java

● both types of nodes also need a reference to the locally stored value 
(possibly including a key)

● data fields are item, left, right

● methods include constructors, accessor methods, mutator methods, 
toString

● test program builds small tree, tests the methods
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BinaryNode exercises

● in-class exercise: write a recursive static method to print in post-
order a tree, given its root

● in-class exercise: build the following tree using the methods from 
class BinaryNode


