Exam review

shell, fork, and exec

Posix system calls

kernel structure: monolithic, microkernel, layered
processes, threads, scheduling, context switch
virtual machines

IPC, races, locks, deadlocks, monitors, pipes, and
message passing

Minix

selL4 ' ¢



shell, fork, and exec

a shell runs as user code
using Posix API to execute user programs
shell scripts evolved into scripting languages

fork: an exact copy of the process

- signals only delivered to the parent

— copy the stack and heap, not the code (unless necessary)

— parent and child have same open file descriptors

- changing the standard file descriptors (0O, 1, 2) allows for pipes and redirects

— wait allows (requires!) the parent to find out when the child completes, and allows

background processing
exec: the process is replaced by the execution of a different program
- replace the text (code) segment
— re-initialize the stack and heap
- set the PC (IP) to the entry point of the program

Y



system calls

e system call implementation in hardware

» system call implementation in Minix
* the three basic system calls in selL4




Posix system calls

* see list (under January 28t)

* Dbe familiar with the main process management
calls: fork, exec, wait, exit

* be familiar with the main file management calls:
open, creat, unlink, mknod, read, write,
cloge, stat, plpe, Mouat, UNOURT, CAreooT

It



kernel structure

monolithic

microkernel

layered

understand the consequences of each choice

In the case of microkernel, understand some of
the choices available for how the microkernel
coordinates the operation of the different
components



processes and scheduling

a process as a virtual machine

memory management: virtual memory, isolation
of one process from another

context switches: what I1s needed,
Implementation in Minix

Minix scheduling: round robin with priorities

real-time scheduling: earliest deadline first
(EDF), rate monotonic for periodic processes

It



threads and synchronization

a process Is a thread of execution together with an
address space

threads have independent execution within the same
address space

a mutex can only be acquired by one thread at a time
a signal can wake up a waiting thread

most threading systems are implemented by an operating
system, but thread switching is not a privileged operation,
and so thread systems could be implemented entirely in

user space ¢



virtual machines

* VM mechanisms: interpreter, hardware support,
what still must be implemented in software

* host OS, guest OS
* protection and limitations of the protection

It



IPC, races, locks, deadlocks,
monitors, pipes, message passing
* InterProcess Communication
* message passing, Minix message passing
* pipes
* race conditions
* locks (and semaphores)
* deadlock, starvation
* monitors




Minix

e overall architecture:

— message-passing microkernel
— device drivers are tasks

* Interrupts generate messages to these tasks

- Posix system calls are implemented by specific
server tasks

* hardware system calls generate messages to these

sServers

e textbook: chapters 1, 2.2, 2.4, 2.5, 2.6

10



selL4

e overall architecture:

- minimal kernel, not a complete OS
 OS such as Linux can be run as a user process
— uSer processes manage all resources

— all permissions represented as capabillities

* e.g. a capabllity to a certain amount of memory can be
used to derive a capabillity to a fraction of that memory

* the derived capability can be given as the memory for a
new process

e chapters 2 and 3 of the reference manual *

11



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

