
1

Exam review

● shell, fork, and exec
● Posix system calls
● kernel structure: monolithic, microkernel, layered
● processes, threads, scheduling, context switch
● virtual machines
● IPC, races, locks, deadlocks, monitors, pipes, and

message passing
● Minix
● seL4

2

shell, fork, and exec

● a shell runs as user code
● using Posix API to execute user programs
● shell scripts evolved into scripting languages
● fork: an exact copy of the process

– signals only delivered to the parent
– copy the stack and heap, not the code (unless necessary)
– parent and child have same open file descriptors
– changing the standard file descriptors (0, 1, 2) allows for pipes and redirects
– wait allows (requires!) the parent to find out when the child completes, and allows

background processing
● exec: the process is replaced by the execution of a different program

– replace the text (code) segment
– re-initialize the stack and heap
– set the PC (IP) to the entry point of the program

3

system calls

● system call implementation in hardware
● system call implementation in Minix
● the three basic system calls in seL4

4

Posix system calls

● see list (under January 28th)
● be familiar with the main process management

calls: fork, exec, wait, exit
● be familiar with the main file management calls:
open, creat, unlink, mknod, read, write,
close, stat, pipe, mount, umount, chroot

5

kernel structure

● monolithic
● microkernel
● layered
● understand the consequences of each choice
● in the case of microkernel, understand some of

the choices available for how the microkernel
coordinates the operation of the different
components

6

processes and scheduling

● a process as a virtual machine
● memory management: virtual memory, isolation

of one process from another
● context switches: what is needed,

implementation in Minix
● Minix scheduling: round robin with priorities
● real-time scheduling: earliest deadline first

(EDF), rate monotonic for periodic processes

7

threads and synchronization

● a process is a thread of execution together with an
address space

● threads have independent execution within the same
address space

● a mutex can only be acquired by one thread at a time
● a signal can wake up a waiting thread

● most threading systems are implemented by an operating
system, but thread switching is not a privileged operation,
and so thread systems could be implemented entirely in
user space

8

virtual machines

● VM mechanisms: interpreter, hardware support,
what still must be implemented in software

● host OS, guest OS
● protection and limitations of the protection

9

IPC, races, locks, deadlocks,
monitors, pipes, message passing

● InterProcess Communication
● message passing, Minix message passing
● pipes
● race conditions
● locks (and semaphores)
● deadlock, starvation
● monitors

10

Minix

● overall architecture:
– message-passing microkernel
– device drivers are tasks

● interrupts generate messages to these tasks

– Posix system calls are implemented by specific
server tasks

● hardware system calls generate messages to these
servers

● textbook: chapters 1, 2.2, 2.4, 2.5, 2.6

11

seL4

● overall architecture:
– minimal kernel, not a complete OS

● OS such as Linux can be run as a user process

– user processes manage all resources
– all permissions represented as capabilities

● e.g. a capability to a certain amount of memory can be
used to derive a capability to a fraction of that memory

● the derived capability can be given as the memory for a
new process

● chapters 2 and 3 of the reference manual

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

