
 1

Outline

● exam review
● recursion
● binary search
● stacks
● queues
● infix, prefix, and postfix expressions
● random numbers
● runtime analysis



 2

exam review

● format similar to last exam
● material from lecture notes (including in-class 

exercises), book, assignments, quizzes
● for the book, all the material in Chapters 3, 4, 

and 5
● must also be familiar with the material 

presented before exam 1, i.e. review the 
material (and the exam)



 3

review of recursion

● recursion is useful when we have a problem 
that:
● has an easy solution for some base cases, and
● for all other cases, has a solution that can be 

expressed in terms of solving a problem that is 
closer to the base case. 

● the problem that is closer to the base case is 
often a smaller problem
● e.g., smaller value of n
● e.g., linked list shorter by one node



 4

coding recursion

● recursion in Java (and in most languages) is 
only available at the level of methods

● the parameters of the method encode the 
problem, and the value of at least one of the 
parameters must be different on each call
● otherwise, infinite recursion is guaranteed

● on each recursive call, the parameters must 
come closer to the base case



 5

recursion is easier than loops for:

● anything that requires reversing the order of 
something:
● in printing a number, the high-order digits should be 

printed first, but the low-order digits are more easily 
accessible (using modulo)

● printing a linked list in reverse order. 
● operation on recursive data structures such as 

linked lists (or trees)
● in-class exercise: write a recursive method to 

print a linked list in reverse order



 6

in many cases
recursion is equivalent to loops

● repeated operations can be usually implemented as 
either loops or recursive methods

● in most of these cases it doesn't matter much whether 
the solution is recursive or iterative (except as 
required on assignments and exams, or by your boss)

● operations on arrays
● binary search
● arbitrary (terminating) loops
● iterators do not benefit from recursion, but regular 

loops can be replaced by calls to recursive methods



 7

infinite recursion

● each recursive call pushes on the stack the 
parameters of the call, and the return address
● non-recursive calls do the same

● the stack is finite, and may only be a few megabytes
● if the stack is filled before the recursion ends, the 

program is terminated with stack overflow
● to avoid infinite recursion, each recursive call must 

come closer to a base case
● this is easy to guarantee on non-circular recursive 

data structures



 8

binary search

● searching in a sorted array
● guaranteed logarithmic time
● look in the middle,
● select left or right half,
● and repeat until found

● or guaranteed not found
● always need two indices to keep track of the start and end of 

the sub-array where the item may still be found
● recursive or iterative implementation: same performance, 

about same level of difficulty
● for exam, be able to understand and/or code binary search



 9

stacks

● Last-In First-Out (LIFO) data structures
● two main implementations:

● fixed-size (or variable-size) array: instance variables include array, index 
to top element

● singly-linked list: pointer to first node, containing the top element of the 
stack

● be able to implement push, pop, and size for any of these
● main operations are constant time

● the only linear time operation is to increase the array size when pushing 
new data on an array stack, and only if the stack grows as needed

● with the array size doubling whenever the stack grows, even on an 
array implementation of a stack, the main operations require 
amortized constant time



 10

queues

● First-In First-Out (FIFO) data structures
● three main implementations:

● singly-linked list: pointers to first and last node in queue
● circular linked list: pointer to last node in queue
● fixed-size circular array: start index, end index. Index arithmetic is 

done modulo the array size 
● be able to implement offer and poll for at least the first and third
● the main operations are constant time
● double-ended queues have the operations of both stacks and 

queues
● essentially, both add and remove at both ends of the Dequeue



 11

infix, prefix, and postfix expressions

● infix: operator is between operands, needs precedence, 
parentheses

● prefix: operator is before operands
● postfix: operator is after operands
● implementing infix and prefix expressions requires an 

operand stack and an operator stack
● implementing postfix expressions only requires an 

operand stack: whenever an operator is encountered, 
pop the operands off the stack, execute the operation, 
and push the result

● remember that integer division rounds towards zero



 12

random numbers

● truly random numbers require an unpredictable 
physical process

● pseudo random numbers are unpredictable 
rather than random

● for example, n' = (n * 45913 + 4137) % 65536 
generates 16-bit random numbers: starting from 
1, we get 50050, 61019, 36556, 22805, 46966, 
23087, 18304, ...

● note in this example the last bit (even/odd) 
always alternates between 0 and 1



 13

runtime analysis

● constant time: stack and queue insertion and 
deletion, linked list insertion or deletion at the 
front, linked list insertion at the back if a tail 
pointer is kept

● log time if doubling the size of the problem 
increases the time by a constant: binary search
● soon we will see tree operations that take log time

● linear time: ordered linked list insertion or 
deletion, worst case tree insertion, deletion, or 
find



 14

implementation

● exam questions may expect you to be able to implement 
methods covered in class, such as from classes:
● ArrayStack.java
● LinkedStack.java
● BinarySearch.java (and the iterative equivalent)
● LinkedListRec.java

● if any of these are asked, a description of the method 
would be given

● you may have to come up with the method return type 
and parameters. This is especially important for 
recursive methods


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

