
 1

Outline

● infix, prefix, and postfix expressions
● StringBuilder
● queues
● queue interface
● queue applications
● queue implementation: array queue
● queue implementation: linked queue
● application of queues and stacks: data structure traversal
● application of queues: simulation of an airline counter
● random numbers

 2

non-infix expressions

● in a prefix expression, the operator comes before the operands:

/ + 3 * 7 4 2 means (3 + 7 * 4) / 2
● in a postfix expression, the operator comes after the operands:

4 2 / 3 + 1 * means (4 / 2 + 3) * 1
● in an infix expression, the operator comes in-between the operands
● only infix expressions need:

● precedence
● parentheses (to override precedence)

● in prefix and postfix expression, the position indicates which operands
are used with which operators

● converting from one notation to the other can benefit from using a stack
or recursion

● computing in prefix or postfix is easy when using a stack

 3

algorithm for postfix computation

● read the next input (next character) of the string
● if the character is an operand, push it onto the stack
● if the character is an operator,

● pop the top two elements off the stack,
● apply the corresponding operation (the operands must be in the correct order!),
● push the result back on the stack

● if the string is empty:
● if the operand stack has one element, that element is the result
● if the operand stack has 0 or multiple elements, the expression is malformed

● in-class exercise: use the above algorithm to evaluate the following
expressions:

9 7 /

1 2 * 3 * 4 *

3 4 * 1 2 + -

 4

StringBuilder

● Java makes it easy to concatenate strings
● however, it is not particularly efficient: it involves

copying all the characters of the original and the
new string

● a string builder is like an array list, but for
strings: it is a data structure that efficiently
supports growable (extensible) strings

● a StringBuffer is similar, but will also work
correctly in multi-threaded programs

 5

Queues

● a stack is a Last-In, First-Out (LIFO) data structure
● a First-In, First-Out (FIFO) data structure is known as a queue
● the word "queue" (pronounced the same as the letter "Q") is used

in the UK for what in the US is known as a "line", e.g. at a
supermarket or a bank or a movie theater

● the first person in the queue will be the first one served
● queues are commonly used with computers:

● documents to be printed are queued
● packets to be sent on a network are queued

● priority queues allow high-priority items to move to the head of a
line, so priority queues are not strictly FIFO

● regular queues are strictly FIFO

 6

Queue Interface

● a queue is a collection: Interface Queue<E>
● boolean isEmpty()
● boolean offer(E value) attempts to insert the value at the end of the queue,

returning whether the insertion was completed
● boolean add(E value) does the same, except if it is unable to insert the value, throws
java.lang.IllegalStateException

● E poll() removes and returns the object at the head of the queue, or null if the
queue is empty
● E remove() does the same, except if the queue is empty, throws
java.util.NoSuchElementException

● E peek() is similar to poll, but does not remove the element
● E element() does the same, except if the queue is empty, throws
java.util.NoSuchElementException

● Iterator<E> iterator() returns a new iterator over the elements of the
queue

● isEmpty() and iterator() are inherited from Interface Collection<E>

 7

Queue Applications

● simulating waiting lines:
● random arrivals
● random time to serve a client
● single queue? multiple queues?
● compute the average waiting time over many simulations
● compute the worst case waiting time over many simulations
● compute the average worst case waiting time for each simulation

● recognizing palindromes:
● queue is FIFO, stack is LIFO
● push each character onto the stack, offer each character to the queue
● then remove one character at a time from both data structures
● if it is a palindrome, the characters will be the same

● print queue: print jobs in the order submitted
● traversing data structures

 8

Queue Implementation Strategies

● similar to stack:
● linked list implementation, or
● array implementation

● similar to other collections, we don't need to
know the type of the elements, only that they
are objects, so a generic implementation is fine

 9

Array Implementation of Queues

● like stack: store all the elements in an array
● when inserting a new element (offer), just like

stack, add the element at the end of the queue
● two choices when removing an new element

from the front of the list (poll, remove):
● copy all subsequent elements down by one index,

so the first element is still at the beginning of the
array, or

● keep track of where the head of the queue is, with
another index variable

 10

Array Queues: copying

● for example, removing the front element (a)
from this queue:

● can be done by copying:

 11

Array Queues:
keeping track of the first element

● removing the front element (a) from this queue:

● can be done by updating the first element:

● in-class exercise: what are the advantages and
disadvantages of these two strategies?

 12

Array Queue without copying

● two integer variables, one the index of the head of the queue
(front), the other the index of the tail of the queue (end)

● so valid elements are found from array[front] through
array[end - 1]

● queue contents get ever higher in the array, while lower-numbered
indices will no longer contain valid data

● eventually, even if the queue only has a few values, we run out of
indices to put new data into

● solution: once we reach the end of the array, put the data beginning
at index 0 again
● so this is called a circular queue

● the modulo operation can be used to make this simple:
index = (index + 1) % QUEUE_SIZE;

 13

Circular Queue Example

● remember

index = (index + 1) % QUEUE_SIZE;
● for example, if queue size is 15 and index = 14,

14 + 1 = 15,

15 % 15 = 0

so the new value of the index is 0
● the number of elements in the array is

(end - front + QUEUE_SIZE) % QUEUE_SIZE,

but it is easier to simply maintain a size field

 14

Another Circular Queue Example

● this is an example of adding elements 's' and 't'
to a queue:

 15

implementation of the method
offer

● if there is room,
● insert at end
● increment end modulo MAX_SIZE

● offer calls the private method reallocate if
needed
● if no room, could simply return false
● implementation in textbook (p. 193) doubles the size of

the array when more room is needed: what is the runtime
of this method?

● because the array is used circularly, cannot just copy the
array using Arrays.copyOf (see textbook, p. 194)

 16

Amortized Runtime Analysis
(review)

● big-O analysis only considers worst-case runtime
● consider the offer method in the textbook:

● if there is room, it takes O(1) (constant time)
● if more room is needed, it takes O(n) (linear time)

● how long does it take on average?
● assume we just doubled the size of the array, to size 2n
● so for the next n (or more) calls to offer, the calls will take constant time
● then, the following call to offer will take time n
● the total time for n calls is O(n)
● so the average time per calls must be O(1)
● this is known as the amortized runtime: sometimes the call is expensive, but

this cost is amortized across a large (enough) number of inexpensive calls, so the
average is low

● the hard part is guaranteeing that there will be all those inexpensive calls

 17

Amortized Runtime Analysis:
why it’s important to double

● assume that instead of doubling the array size, the
array size increases by a constant, say 10 new
elements

● then, O(n) time is spent for every 10 calls
● on average, the time is O(n/10), which is still O(n)

or linear
● no constant is large enough to amortize the linear

cost
● so the array size has to at least double to give

O(1) amortized time

 18

implementation of the method
poll

● if there is at least one element,
● element is taken from front
● increment front modulo MAX_SIZE

● if there is no element, simply returns null
● peek is even simpler: no increment, no size

change
● what is the runtime of these methods?
● what is the runtime of the empty method?

 19

Linked List Implementation of
Queues

● a queue can be implemented as either a singly-linked or
doubly-linked list

● either way, the head of the list is usually the front of the queue,
and the tail of the list is the back of the queue

● either way, we keep a head node (for removal) and a tail node
(for insertion)

● there is a special case when the list is empty (method offer)
or when removing the last element from the list (method poll)

● In-class exercise (individually or in small groups): write the
code for either the offer or poll method (or if you have
time, for both) for a queue implemented using a singly-linked
list

 20

Traversal of Data Structures

● in a linked list, each node has a link to at most one
other node

● in a doubly-linked list, each node has a link to at most
two other nodes

● there are more general data structures in which nodes
can have links to multiple other nodes

● these data structures go by different names, including
trees and graphs

● in some cases, we need to have a program start at one
node and visit all the other nodes in the data structure:
tree traversal or graph traversal

 21

Breadth-First Traversal

● in general, I can start from a given node and put into a queue
all the nodes it is connected to

● then, I repeatedly remove one node from the queue, visit it,
and put into the queue all the nodes it (the new node) is
connected to

● if I keep doing this, staying away from nodes that have already
been visited, I will eventually visit all connected nodes

● this is called breadth-first traversal:
● visually arranging the first node at the top
● the nodes it is connected to right below it,
● the nodes they are connected to right below them,
● nodes are visited in left-to-right and top-to-bottom order

 22

Depth-First Traversal

● for a traversal, I could push the nodes on a stack
instead of adding them to a queue

● then, the node I will visit next is the node I put on
the stack most recently

● that means visiting every node connected to the
most recently visited node, before visiting any
node that was pushed onto the stack earlier

● this is called depth-first traversal because the
traversal tends to go top-to-bottom, then climb
back up and explore the side branches

 23

Double-Ended Queues

● sometimes, it is useful to be able to add and
remove elements at either end of a queue

● this double-ended queue, or deque
(pronounced either "D-Q" or “deck”), can do
everything either a stack or a queue can do

● implementation, using either arrays or linked
lists, is similar to the implementation of either a
stack or a queue

 24

Simulation of an Airline Counter

● two queues: regular and business class passengers
● random arrivals: during each minute, one passenger arrives with a given probability,

arrivalRate
● this is computed by testing

 if (Math.random() < arrivalRate) { // passenger arrives
● e.g. if arrival rate is 0.5, on average a person arrives every two minutes

● one agent, requiring a time that is uniformly random between 0 and some defined
maximum number of minutes

● every minute,
● check to see whether to add passengers to each queue
● check to see whether the agent is done taking care of the current passenger, and if so, select the

next passenger if any
● update the time

● once a passenger is selected, that passenger's statistics (waiting time) must be updated
● if there are passengers in both queues, we can try different strategies for selecting the

next passenger

 25

Random Numbers

● tossing a fair coin is truly random -- there is no way to predict what the next toss
will give

● computers do not find it easy to toss coins
● instead, beginning with a specific number (the seed), they apply a complicated

function to yield a new number
● this new number is a pseudo-random value: it is computed, and therefore not

random, but there is no easy way to predict the new number from the old (without
knowing the exact function), and so it looks like a sequence of random numbers

● the initial seed can be a fixed value (e.g. 1), to give a repeatable sequence of
random numbers (good for debugging code)

● or, the initial seed can be selected almost at random, e.g. the time of day when
the program is run, to give a different sequence each time

● Java's Math.random() returns a double uniformly distributed between 0 and 1
● Java Random by default is initialized to the current day and time, but the

programmer can explicitly specify the seed

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

