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Outline

● infix, prefix, and postfix expressions
● StringBuilder
● queues
● queue interface
● queue applications
● queue implementation: array queue
● queue implementation: linked queue
● application of queues and stacks: data structure traversal
● application of queues: simulation of an airline counter
● random numbers
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non-infix expressions

● in a prefix expression, the operator comes before the operands:

/ + 3 * 7 4 2 means (3 + 7 * 4) / 2
● in a postfix expression, the operator comes after the operands:

4 2 / 3 + 1 * means (4 / 2 + 3) * 1
● in an infix expression, the operator comes in-between the operands
● only infix expressions need:

● precedence
● parentheses (to override precedence) 

● in prefix and postfix expression, the position indicates which operands 
are used with which operators

● converting from one notation to the other can benefit from using a stack 
or recursion

● computing in prefix or postfix is easy when using a stack
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algorithm for postfix computation

● read the next input (next character) of the string
● if the character is an operand, push it onto the stack
● if the character is an operator,

● pop the top two elements off the stack,
● apply the corresponding operation (the operands must be in the correct order!),
● push the result back on the stack

● if the string is empty:
● if the operand stack has one element, that element is the result
● if the operand stack has 0 or multiple elements, the expression is malformed 

● in-class exercise: use the above algorithm to evaluate the following 
expressions:

9 7 /

1 2 * 3 * 4 *

3 4 * 1 2 + -



 4

StringBuilder

● Java makes it easy to concatenate strings
● however, it is not particularly efficient: it involves 

copying all the characters of the original and the 
new string

● a string builder is like an array list, but for 
strings: it is a data structure that efficiently 
supports growable (extensible) strings

● a StringBuffer is similar, but will also work 
correctly in multi-threaded programs
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Queues

● a stack is a Last-In, First-Out (LIFO) data structure
● a First-In, First-Out (FIFO) data structure is known as a queue
● the word "queue" (pronounced the same as the letter "Q") is used 

in the UK for what in the US is known as a "line", e.g. at a 
supermarket or a bank or a movie theater

● the first person in the queue will be the first one served
● queues are commonly used with computers:

● documents to be printed are queued
● packets to be sent on a network are queued 

● priority queues allow high-priority items to move to the head of a 
line, so priority queues are not strictly FIFO

● regular queues are strictly FIFO
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Queue Interface

● a queue is a collection: Interface Queue<E>
● boolean isEmpty()
● boolean offer(E value) attempts to insert the value at the end of the queue, 

returning whether the insertion was completed
● boolean add(E value) does the same, except if it is unable to insert the value, throws 
java.lang.IllegalStateException 

● E poll() removes and returns the object at the head of the queue, or null if the 
queue is empty
● E remove() does the same, except if the queue is empty, throws 
java.util.NoSuchElementException 

● E peek() is similar to poll, but does not remove the element
● E element() does the same, except if the queue is empty, throws 
java.util.NoSuchElementException 

● Iterator<E> iterator() returns a new iterator over the elements of the 
queue

● isEmpty() and iterator() are inherited from Interface Collection<E> 
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Queue Applications

● simulating waiting lines:
● random arrivals
● random time to serve a client
● single queue? multiple queues?
● compute the average waiting time over many simulations
● compute the worst case waiting time over many simulations
● compute the average worst case waiting time for each simulation 

● recognizing palindromes:
● queue is FIFO, stack is LIFO
● push each character onto the stack, offer each character to the queue
● then remove one character at a time from both data structures
● if it is a palindrome, the characters will be the same 

● print queue: print jobs in the order submitted
● traversing data structures
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Queue Implementation Strategies

● similar to stack:
● linked list implementation, or
● array implementation

● similar to other collections, we don't need to 
know the type of the elements, only that they 
are objects, so a generic implementation is fine
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Array Implementation of Queues

● like stack: store all the elements in an array
● when inserting a new element (offer), just like 

stack, add the element at the end of the queue
● two choices when removing an new element 

from the front of the list (poll, remove):
● copy all subsequent elements down by one index, 

so the first element is still at the beginning of the 
array, or

● keep track of where the head of the queue is, with 
another index variable
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Array Queues: copying

●  for example, removing the front element (a) 
from this queue:

● can be done by copying:
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Array Queues:
keeping track of the first element

●  removing the front element (a) from this queue:

● can be done by updating the first element:

● in-class exercise: what are the advantages and 
disadvantages of these two strategies?
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Array Queue without copying

● two integer variables, one the index of the head of the queue 
(front), the other the index of the tail of the queue (end)

● so valid elements are found from array[front] through 
array[end - 1]

● queue contents get ever higher in the array, while lower-numbered 
indices will no longer contain valid data

● eventually, even if the queue only has a few values, we run out of 
indices to put new data into

● solution: once we reach the end of the array, put the data beginning 
at index 0 again
● so this is called a circular queue

● the modulo operation can be used to make this simple:
index = (index + 1) % QUEUE_SIZE;
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Circular Queue Example

● remember

index = (index + 1) % QUEUE_SIZE;
● for example, if queue size is 15 and index = 14,

14 + 1 = 15,

15 % 15 = 0

so the new value of the index is 0
● the number of elements in the array is

(end - front + QUEUE_SIZE) % QUEUE_SIZE,

but it is easier to simply maintain a size field 
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Another Circular Queue Example

● this is an example of adding elements 's' and 't' 
to a queue:
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implementation of the method 
offer

● if there is room,
● insert at end
● increment end modulo MAX_SIZE 

● offer calls the private method reallocate if 
needed
● if no room, could simply return false
● implementation in textbook (p. 193) doubles the size of 

the array when more room is needed: what is the runtime 
of this method?

● because the array is used circularly, cannot just copy the 
array using Arrays.copyOf (see textbook, p. 194)
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Amortized Runtime Analysis
(review)

● big-O analysis only considers worst-case runtime
● consider the offer method in the textbook:

● if there is room, it takes O(1) (constant time)
● if more room is needed, it takes O(n) (linear time) 

● how long does it take on average?
● assume we just doubled the size of the array, to size 2n
● so for the next n (or more) calls to offer, the calls will take constant time
● then, the following call to offer will take time n
● the total time for n calls is O(n)
● so the average time per calls must be O(1)
● this is known as the amortized runtime: sometimes the call is expensive, but 

this cost is amortized across a large (enough) number of inexpensive calls, so the 
average is low

● the hard part is guaranteeing that there will be all those inexpensive calls



 17

Amortized Runtime Analysis:
why it’s important to double

● assume that instead of doubling the array size, the 
array size increases by a constant, say 10 new 
elements

● then, O(n) time is spent for every 10 calls
● on average, the time is O(n/10), which is still O(n) 

or linear
● no constant is large enough to amortize the linear 

cost
● so the array size has to at least double to give 

O(1) amortized time 



 18

implementation of the method
poll

● if there is at least one element,
● element is taken from front
● increment front modulo MAX_SIZE 

● if there is no element, simply returns null
● peek is even simpler: no increment, no size 

change
● what is the runtime of these methods?
● what is the runtime of the empty method?
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Linked List Implementation of 
Queues

● a queue can be implemented as either a singly-linked or 
doubly-linked list

● either way, the head of the list is usually the front of the queue, 
and the tail of the list is the back of the queue

● either way, we keep a head node (for removal) and a tail node 
(for insertion)

● there is a special case when the list is empty (method offer) 
or when removing the last element from the list (method poll)

● In-class exercise (individually or in small groups): write the 
code for either the offer or poll method (or if you have 
time, for both) for a queue implemented using a singly-linked 
list
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Traversal of Data Structures

● in a linked list, each node has a link to at most one 
other node

● in a doubly-linked list, each node has a link to at most 
two other nodes

● there are more general data structures in which nodes 
can have links to multiple other nodes

● these data structures go by different names, including 
trees and graphs

● in some cases, we need to have a program start at one 
node and visit all the other nodes in the data structure: 
tree traversal or graph traversal
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Breadth-First Traversal

● in general, I can start from a given node and put into a queue 
all the nodes it is connected to

● then, I repeatedly remove one node from the queue, visit it, 
and put into the queue all the nodes it (the new node) is 
connected to

● if I keep doing this, staying away from nodes that have already 
been visited, I will eventually visit all connected nodes

● this is called breadth-first traversal:
● visually arranging the first node at the top
● the nodes it is connected to right below it,
● the nodes they are connected to right below them,
● nodes are visited in left-to-right and top-to-bottom order
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Depth-First Traversal

● for a traversal, I could push the nodes on a stack 
instead of adding them to a queue

● then, the node I will visit next is the node I put on 
the stack most recently

● that means visiting every node connected to the 
most recently visited node, before visiting any 
node that was pushed onto the stack earlier

● this is called depth-first traversal because the 
traversal tends to go top-to-bottom, then climb 
back up and explore the side branches
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Double-Ended Queues

● sometimes, it is useful to be able to add and 
remove elements at either end of a queue

● this double-ended queue, or deque 
(pronounced either "D-Q" or “deck”), can do 
everything either a stack or a queue can do

● implementation, using either arrays or linked 
lists, is similar to the implementation of either a 
stack or a queue
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Simulation of an Airline Counter

● two queues: regular and business class passengers
● random arrivals: during each minute, one passenger arrives with a given probability, 

arrivalRate
● this is computed by testing

    if (Math.random() < arrivalRate) { // passenger arrives
● e.g. if arrival rate is 0.5, on average a person arrives every two minutes

● one agent, requiring a time that is uniformly random between 0 and some defined 
maximum number of minutes

● every minute,
● check to see whether to add passengers to each queue
● check to see whether the agent is done taking care of the current passenger, and if so, select the 

next passenger if any
● update the time 

● once a passenger is selected, that passenger's statistics (waiting time) must be updated
● if there are passengers in both queues, we can try different strategies for selecting the 

next passenger
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Random Numbers

● tossing a fair coin is truly random -- there is no way to predict what the next toss 
will give

● computers do not find it easy to toss coins
● instead, beginning with a specific number (the seed), they apply a complicated 

function to yield a new number
● this new number is a pseudo-random value: it is computed, and therefore not 

random, but there is no easy way to predict the new number from the old (without 
knowing the exact function), and so it looks like a sequence of random numbers

● the initial seed can be a fixed value (e.g. 1), to give a repeatable sequence of 
random numbers (good for debugging code)

● or, the initial seed can be selected almost at random, e.g. the time of day when 
the program is run, to give a different sequence each time

● Java's Math.random() returns a double uniformly distributed between 0 and 1
● Java Random by default is initialized to the current day and time, but the 

programmer can explicitly specify the seed
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