
 1

Outline

● errors
● reasoning about programs
● stacks
● stack ADT
● method signatures
● array stack implementation
● linked stack implementation
● stack applications
● infix, prefix, and postfix expressions
● StringBuilder

 2

Testing

● unless code is written correctly from the start, errors are found by testing
● but writing correct code from the start is hard, so most programmers use testing

to make their code as close to correct as possible

● test routines can be included in the main method of any class that doesn't
already have one, or in a separate test program. This is a unit test. This main
method is a driver program. The driver program can also be defined separately.

● the unit test should call all the methods of the class, with as many combinations
of parameters as possible

● if the writer of the test code doesn't study the code under test, this is black box
testing

● at the very least, the goal of testing is full coverage: making sure that every path
through the code has been used at least once, and has produced an acceptable
result

● to produce full coverage, the programmer of the test program must study the
code being tested: this is white box testing

 3

A few common types of errors

● off-by-one (fencepost): how many fence posts are needed
for a fence that is 20 feet long and has a post every 2 feet?

● not initializing data correctly. Sometimes this causes null
pointer access

● using different variables as if they were one, or using one
variable as if it were two variables

● assumptions that don't turn out to be true (misconceptions),
not establishing and maintaining invariants

● not checking things that should be checked, e.g.
if (x == null)

 4

strategies for testing

● print/show all method invocations and their parameters and return values (trace)
● write code to check that the invariants are established and maintained
● write test cases to not only provide full coverage, but also check all boundary

conditions, where the result should change (make sure it changes where it should)
● some common special cases:

● less than 0, 0, 1, greater than 1
● first and last elements of an array, collection, linked list
● elements and values that are null
● desired element is not in the collection, or is in the collection more than once
● collection has size 0, 1, or larger

● for example, when testing adding on a linked list, can test adding at the beginning of a
linked list, at the end, in the middle, and adding into an empty linked list, and in both
positions of a 1-element linked list. Also, adding an element that has the value null (is
the behavior of your program defined in that case? Should it be?)

● if code to be tested needs to call a method that is not yet implemented, a stub of that
method can do only what is needed for the test

 5

reasoning about programs

● a precondition must be true before a method is called
● the code in the method is designed assuming that the precondition is true
● the caller of a method must guarantee (be sure) that the precondition holds
● a postcondition will be true after a method is called
● the code in the method must guarantee that the postcondition is true
● preconditions and postconditions are a little bit like a contract or any other

agreement: if the caller provides the preconditions, the method will provide
the postconditions

● preconditions and postconditions are documented in Javadoc
● invariants are postconditions of every method, including the constructors
● invariants are preconditions of every method except the constructors
● invariants are usually documented for the entire class rather than for each

method

 6

proof of program correctness

● given a mathematical specification
● it might be possible to prove that a program

implements that specification
● specification: add1 adds 1 and returns the result

private static int add1(int parameter) {

 return parameter + 1;

}

● seems obvious
● but fails if parameter is Integer.MAX_VALUE

 7

Stacks

● stacks of dishes or trays in a
cafeteria
● maybe on a spring-loaded

mechanism so only the top one is
accessible

● adding more dishes pushes down the
stack, so only the new top is still
accessible

● Last In First Out discipline (LIFO)
– FIFO will be discussed at a later time,

when we talk about queues

John Lehman, CC BY 3.0

 8

Stacks in Computer Science

● a data structure to hold a variable number of
elements

● of which only the top one is accessible at any given
time

● the stack may be empty if it holds no elements
● the stack keeps track of the number of elements it

has, as well as the individual elements
● some stack implementations set a maximum size

for the stack, so the stack overflows if more data is
added to a full stack

 9

Stacks and other data structures

● compared to arrays and array lists:
● an array/list does not keep track of which elements

have been initialized
● any element of an array/list is equally easy to access
● an array has a fixed number of elements

● compared to linked lists:
● a linked list can access any element of the list
● even though accessing some (esp. the head) is faster

than accessing others
– random access takes O(n) time

 10

A Stack for Method Calls
(Procedure Calls)

● this stack grows downward
● each call pushes onto the

stack:
● parameters for the method

being called
● return address
● local variables

● finite memory is available
for this stack
● too many calls overflow the

stack

 11

Stack ADT and Stack Interface

● consider a stack to store objects of some type E:
● void push(E item)

adds the value to the top of the stack
● E pop() throws EmptyStackException

removes the value on top of the stack and returns it (or throws the
exception)

● E peek() throws EmptyStackException

is like pop, except it doesn't remove the element

● boolean empty()

reports whether the stack is empty
● only the topmost element of the stack is ever accessible
● as in every ADT, we have specified only what the stack does, and not how

that is accomplished. The how part belongs in the implementation

 12

Method Signatures

● can the same name be reused for different methods?
● Java: yes -- this is overloading: same name, different functionality, overloads one

name with more than one function
● programmers: yes, if they do the same thing
● some other languages: no

● Java uses a signature for each method that includes the method's name, and the
type/class and order (sequence) of its parameters

● each method's signature must be unique within a class
● example:

● push(E) is the signature for the push method (above)

● in an interface, this is written with the method prototype:
void push (E item);

● in a class implementation, the signature is taken from the method header:
/* @param value to push onto the stack */
public void push(E value) {

 13

Array stack:
implementation using arrays

● even though arrays and stacks are very different,
we can use an array in implementing our stack

● implementing a stack using an array is similar to
implementing a list using a array

● instead of the size of the list, we keep track of
where the top of the stack is: an integer we call
top

● the code outside the class does not know and
does not need to know that the stack is
implemented using an array

 14

Linked stack:
implementation using linked nodes

● even though linked lists and stacks are very
different, we can use linked nodes in
implementing our stack

● implementing a stack using linked nodes is
similar to implementing a list using linked nodes

● all operations occur at the top of the stack,
which is the only node we need to keep track of
● the top of the stack is at the head of the linked list

 15

performance of
Array Stack and Linked Stack

● given ArrayStack.java:
● in-class exercise (everyone together): what is

the runtime (big O) of empty(), push(), and
pop()?

● given LinkedStack.java:
● in-class exercise (everyone together): what is

the runtime (big O) of empty(), push(), and
pop()?

 16

Other stack implementations, using
a Java Vector or List

● any extensible data structure that has access at one end can be used
to implement a stack

● this includes java Vectors and java Lists
● new data is added to or removed from the end of the Vector or ArrayList

in O(1) time (when the array doesn't have to grow)
● in the code in the book (Listing 3.4, p. 164), note that the data is stored

in an object of type List<E>, that is created as an ArrayList<E>:
this is an example of polymorphism, and makes it easy to switch to a
different kind of list

● new data is added to or removed from the end of the ArrayList, usually
in O(1) time (except when the underlying array needs to grow)

● when using a LinkedList, new data is added to or removed from the
front of the LinkedList in O(1) time

 17

Stack Applications: Palindromes

● a palindrome is a string that is the same when read
backwards or forwards: "radar", "level", "racecar"

● there are many algorithms for recognizing palindromes, and
most are equivalent

● one such algorithm uses a stack:
● the characters of the string are pushed onto the stack, one by one
● as they are popped (removed) from the stack, they compared to

the characters in the string
● since they are popped in LIFO order, they are removed in reverse

order
● if all the characters from the stack match the characters

from the string, the string is a palindrome

 18

Stack Applications:
Matching Parentheses

● balanced parenteses: "(a (b c) [d (e)] f g)"
● unbalanced parenteses: "(a (b c {d (e)) f g]"
● algorithm to check for balanced parentheses:

● when encountering an open parenthesis, put it on the stack
● when encountering a closing parenthesis, remove the

matching one from the top of the stack
– or, if the top of stack does not match, or if the stack was empty,

declare an error
● at the end of the string, should have an empty stack

● if the stack is not empty at the end of the string, the
parentheses are not balanced

 19

infix expressions

● 2 + 3 * 4 has the value?
● some operators (*, /, %) have higher precedence than other operators (+, -)
● operators with the same precedence are evaluated in left-to-right order
● these expression can be evaluated using two stacks:

● when an operand is read, it is pushed onto the operand stack
● when reading an operator with higher precedence than the top of the operator stack, the

new operator is pushed onto the operator stack
● otherrwise, the top of the operator stack is popped and evaluated with the top two

elements of the operand stack, the result is pushed onto the operand stack, and the
new operator is left in the string to be read again

● at the end of the expression, operators are popped off and evaluated (popping
the operands and pushing the results) until the operator stack is empty

● at this point, the operand stack should have exactly one number in it
● more interesting with more precedence levels, e.g. ^ (exponentiation), &&, ==

 20

infix expression evaluation example

● 2 + 3 * 4 - 5 has the value?
● read 2, push it onto operand stack
● read +, push it onto operator stack
● read 3, push it onto operand stack
● read *, push it onto operator stack
● read 4, push it onto operand stack

● remaining to be read: - 5
● operand stack has: 2, 3, 4 (4 is top of stack)
● operator stack has: +, * (* is at top of stack)

 21

infix expression evaluation example

● 2 + 3 * 4 - 5 has the value?

● operand stack has: 2, 3, 4 (4 is top of stack)
● operator stack has: +, * (* is at top of stack)
● remaining to be read: - 5

● - has lower precedence than *, so pop * from the operator stack (which now only has +), pop 4
and 3 from the operand stack, compute 3 * 4 = 12, and push 12 onto the operand stack (which
now has 2, 12)

● - has the same precedence as +, so pop + from the operator stack, pop 12 and 2 from the
operand stack, compute 2 + 12 = 14, and push 14 onto the operand stack (which now has 14)

● push - onto the operator stack, which now only has -
● push 5 onto the operand stack, which now has 12, 5
● at the end of the string, so pop the operator stack and (twice) the operand stack, compute 14 -

5 = 9, push 9 onto the operand stack, which now only has 9
● we’re at the end of the string and the operator stack is empty, the result is 9

 22

infix expressions in the compiler

● the Java compiler must recognize (parse) Java
expressions and either:
● evaluate any constant-valued (sub-) expressions, or
● emit code to evaluate the expression at run-time

 23

parenthesized infix expressions

● (2 + 3) * 4 has the value?
● when reading a left parenthesis, push it onto

the operator stack
● when reading a right parenthesis, behave as at

the end of the expression, until the matching left
parenthesis is popped from the operator stack

● everything else is the same as the previous
algorithm

 24

integer operators

● addition (+), subtraction (-), multiplication (*) work as expected
● division (/) rounds down: 3 / 2 gives 1, 101 / 100 gives 1
● remainder (%), also known as modulo, returns the remainder

from the division: 3 % 2 gives 1, 127 % 100 is 27
● multiplication, division, and modulo have higher precedence

than addition and subtraction, and so are evaluated first:

3 + 54 * 17 is 3 + (54 * 17)
● with equal-precedence operators, the expression is evaluated

from left to right:

99 - 3 - 33 / 11 / 3 is ((99 - 3) - ((33 / 11) / 3))

 25

non-infix expressions

● in a prefix expression, the operator comes before the operands:

/ + 3 * 7 4 2 means (3 + 7 * 4) / 2
● in a postfix expression, the operator comes after the operands:

4 2 / 3 + 1 * means (4 / 2 + 3) * 1
● in an infix expression, the operator comes in-between the operands
● only infix expressions need:

● precedence
● parentheses (to override precedence)

● in prefix and postfix expression, the position indicates which operands
are used with which operators

● converting from one notation to the other can benefit from using a stack
or recursion

● computing in prefix or postfix is easy when using a stack

 26

algorithm for postfix computation

● read the next input (next character) of the string
● if the character is an operand, push it onto the stack
● if the character is an operator,

● pop the top two elements off the stack,
● apply the corresponding operation (the operands must be in the correct order!),
● push the result back on the stack

● if the string is empty:
● if the operator stack is empty and the operand stack has one element, that element is the

result
● if the operator stack is not empty, or the operand stack has 0 or multiple elements, the

expression is malformed
● in-class exercise: use the above algorithm to evaluate the following expressions:

9 7 /

1 2 * 3 * 4 *

3 4 * 1 2 + -

 27

StringBuilder

● Java makes it easy to concatenate strings
● however, it is not particularly efficient: it involves

copying all the characters of the original and the
new string

● a string builder is like an array list, but for
strings: it is a data structure that efficiently
supports growable (extensible) strings

● a StringBuffer is similar, but will also work
correctly in multi-threaded programs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

