
 1

Outline

● the Java Collection interface
● testing
● errors
● reasoning about programs

 2

Collection Interface

● A collection holds values of a different type E
● the number of values can change over time

● unless the collection is unmodifiable
● collections typically have at least two constructors

● one with no arguments
● one with a collection as an argument, makes a copy of the collection

● other methods:
● size
● search: contains, containsAll (why not containsAny?)
● remove is also a search operation: remove, removeAll, removeIf, retainAll
● add, addAll
● toArray, iterator, spliterator, stream, parallelStream

● notice that Collection does not specify an ordering of elements

 3

Collection Hierarchy

● List and Set are sub-interfaces of Collection
● Lists are ordered
● Sets are unordered and cannot have duplicates

● Many classes implement collection, including ArrayList,
Vector, LinkedList, Stack, and at least 5 Set classes

● Because there are many possible constraints on adding
values, add returns false if the element cannot be added
● specifically if adding to a set that already has the value
● if refusing to add for any other reason, e.g. if adding null to a

collection that will not store null values, add throws an
exception

 4

Abstract collection classes

● to create a Collection:
● extend AbstractCollection and implement add, size,

and iterator
● or extend AbstractList, and implement add, get,

remove, set, and size
● or extend AbstractSequentialList, and implement

listIterator and size
● these abstract classes let you create a

collection with a minimum of work

 5

Testing

● unless code is written correctly from the start, errors are found by testing
● but writing correct code from the start is hard, so most programmers use testing

to make their code as close to correct as possible

● test routines can be included in the main method of any class that doesn't
already have one, or in a separate test program. This is a unit test. This main
method is a driver program. The driver program can also be defined separately.

● the unit test should call all the methods of the class, with as many combinations
of parameters as possible

● if the writer of the test code doesn't study the code under test, this is black box
testing

● at the very least, the goal of testing is full coverage: making sure that every path
through the code has been used at least once, and has produced an acceptable
result

● to produce full coverage, the programmer of the test program must study the
code being tested: this is white box testing

 6

A few common types of errors

● off-by-one (fencepost): how many fence posts are needed
for a fence that is 20 feet long and has a post every 2 feet?

● not initializing data correctly. Sometimes this causes null
pointer access

● using different variables as if they were one, or using one
variable as if it were two variables

● assumptions that don't turn out to be true (misconceptions),
not establishing and maintaining invariants

● not checking things that should be checked, e.g.
if (x == null)

 7

strategies for testing

● print/show all method invocations and their parameters and return values
● write code to check that the invariants are established and maintained
● write test cases to not only provide full coverage, but also check all boundary

conditions, where the result should change (make sure it changes where it should)
● some common special cases:

● less than 0, 0, 1, greater than 1
● first and last elements of an array, collection, linked list
● elements and values that are null
● desired element is not in the collection, or is in the collection more than once
● collection has size 0, 1, or larger

● for example, when testing adding on a linked list, can test adding at the beginning of a
linked list, at the end, in the middle, and adding into an empty linked list, and in both
positions of a 1-element linked list. Also, adding an element that has the value null (is
the behavior of your program defined in that case? Should it be?)

● if code to be tested needs to call a method that is not yet implemented, a stub of that
method can do only what is needed for the test

 8

reasoning about programs

● a precondition must be true before a method is called
● the code in the method is designed assuming that the precondition is true
● the caller of a method must guarantee (be sure) that the precondition holds
● a postcondition will be true after a method is called
● the code in the method must guarantee that the postcondition is true
● preconditions and postconditions are a little bit like a contract or any other

agreement: if the caller provides the preconditions, the method will provide
the postconditions

● preconditions and postconditions are documented in Javadoc
● invariants are postconditions of every method, including the constructors
● invariants are preconditions of every method except the constructors
● invariants are usually documented for the entire class rather than for each

method

 9

proof of program correctness

● given a mathematical specification
● it might be possible to prove that a program

implements that specification
● specification: add1 adds 1 and returns the result

private static int add1(int parameter) {

 return parameter + 1;

}

● seems obvious
● but fails if parameter is Integer.MAX_VALUE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

