
 1

Outline

● iterators
● the Java foreach statement

● iterator implementation
● the ListIterator interface

 2

example

● i1 and i2 are iterators

for the same collection
● advancing i2

does not affect i1
● next() returns the next

element and advances

the iterator

 3

Iterator methods

● a Java iterator only provides two or three operations:
● E next(), which returns the next element, and also

advances the references
● boolean hasNext(), which returns whether there is

at least one more element
● void remove(), which removes the last element

returned by next() (this method is optional)

● using remove may invalidate any other existing
(concurrent) iterators
● but should not invalidate this iterator

 4

using Java iterators

List<E> list = …

for (E element: list) {

 …

}
● Java internally re-writes the above loop as:

Iterator<E> it = list.iterator();

while (it.hasNext()) {

 E element = it.next();

 ….

}

 5

Automatic use of iterators:
another example

● as stated, instead of having to use an iterator in a while loop
while loop to use an iterator, the for loop has been
specialized to call the iterator

LinkedList values = ...

int sum = 0;

for (Integer value: values) {

 sum = sum + value;

}
● Java creates and calls the iterator, but the iterator itself is not

visible in the code
● the same code can loop over arrays

 6

Java for and foreach

● this automated (and invisible) use of iterators
with for loops is called the Java enhanced for
statement or for each statement

● the foreach statement works on any expression
that has a value that satisfies the Iterable
interface

 7

Java Iterable interface

● The Iterable interface simply requires an
iterator method:

class MyCollection<E>

 implements Iterable<E> {

// return a new iterator

Iterator<E> iterator();

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

 8

Iterator Implementation

● a Java iterator may or may not be internal to the
collection class

● every Java iterator must have sequential access to the
elements of the collection

● every Java iterator must have at least one variable to
keep track of where it is in the traversal, that is, which
elements have not yet been returned

● See LinkedListIterator.java for a very simple
iterator on linked lists.

● in-class exercise (everyone together): design the code
for the iterator() method of the LinkedList class

http://www2.hawaii.edu/~esb/2013fall.ics211/LinkedListIterator.java.html

 9

ListIterator

● the Java Iterator interface is very general and
reasonably powerful

● sometimes it is useful to be able to move backwards
and forwards, and add or replace as well as remove
elements

● the ListIterator interface adds these operations to
the basic Iterator interface

● it also keeps track of the position and can return the
index of the next or previous item

● the current position is defined to be in-between the
previous element and the next element

 10

ListIterator Interface

public interface ListIterator<E> {

 void add(E e);

 boolean hasNext();

 boolean hasPrevious();

 E next();

 int nextIndex();

 E previous();

 int previousIndex();

 void remove();

 void set(E e);

}

 11

Testing

● unless code is written correctly from the start, errors are found by testing
● but writing correct code from the start is hard, so most programmers use testing

to make their code as close to correct as possible

● test routines can be included in the main method of any class that doesn't
already have one, or in a separate test program. This is a unit test. This main
method is a driver program. The driver program can also be defined separately.

● the unit test should call all the methods of the class, with as many combinations
of parameters as possible

● if the writer of the test code doesn't study the code under test, this is black box
testing

● at the very least, the goal of testing is full coverage: making sure that every path
through the code has been used at least once, and has produced an acceptable
result

● to produce full coverage, the programmer of the test program must study the
code being tested: this is white box testing

 12

A few common types of errors

● off-by-one (fencepost): how many fence posts are needed
for a fence that is 20 feet long and has a post every 2 feet?

● not initializing data correctly. Sometimes this causes null
pointer access

● using different variables as if they were one, or using one
variable as if it were two variables

● assumptions that don't turn out to be true (misconceptions),
not establishing and maintaining invariants

● not checking things that should be checked, e.g.
if (x == null)

 13

strategies for testing

● print/show all method invocations and their parameters and return values
● write code to check that the invariants are established and maintained
● write test cases to not only provide full coverage, but also check all boundary

conditions, where the result should change (make sure it changes where it should)
● some common special cases:

● less than 0, 0, 1, greater than 1
● first and last elements of an array, collection, linked list
● elements and values that are null
● desired element is not in the collection, or is in the collection more than once
● collection has size 0, 1, or larger

● for example, when testing adding on a linked list, can test adding at the beginning of a
linked list, at the end, in the middle, and adding into an empty linked list, and in both
positions of a 1-element linked list. Also, adding an element that has the value null (is
the behavior of your program defined in that case? Should it be?)

● if code to be tested needs to call a method that is not yet implemented, a stub of that
method can do only what is needed for the test

 14

reasoning about programs

● a precondition must be true before a method is called
● the code in the method is designed assuming that the precondition is true
● the caller of a method must guarantee (be sure) that the precondition holds
● a postcondition will be true after a method is called
● the code in the method must guarantee that the postcondition is true
● preconditions and postconditions are a little bit like a contract or any other

agreement: if the caller provides the preconditions, the method will provide
the postconditions

● preconditions and postconditions are documented in Javadoc
● invariants are postconditions of every method, including the constructors
● invariants are preconditions of every method except the constructors
● invariants are usually documented for the entire class rather than for each

method

 15

proof of program correctness

● given a mathematical specification
● it might be possible to prove that a program

implements that specification
● specification: add1 adds 1 and returns the result

private static int add1(int parameter) {

 return parameter + 1;

}

● seems obvious
● but fails if parameter is Integer.MAX_VALUE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

