
 1

Outline

● reminder of invariants and circular lists
● doubly-linked lists
● iterators
● the Java foreach statement

● iterator implementation
● the ListIterator interface

 2

Using Invariants (reminder)

● invariants are useful for reasoning about the program
● some invariants can be checked by the program itself
● if an invariant is ever detected to not be true, the program should

provide enough information to track down the bug (and should either
crash, or re-establish the invariant)

● in ICS 211, if your classes have any invariants, it will be easier to debug
your code if you check them at the beginning and at the end of each
public method

● this may help you improve your understanding of your code, and may
also help you find bugs
● see also the linked list invariants

● if checking is slow, you may have to remove the invariant checking (e.g.,
add a return statement at the beginning of the check method) when
doing performance testing

http://www2.hawaii.edu/~esb/2017fall.ics211/LinkedList.java.html

 3

Circular Linked Lists
reminder

● instead of the last next field pointing to null, it
points to the head of the linked list

● then the head can be reached as tail.next,
and does not need to be kept explicitly

● looping must end when current == tail,
rather than when current == null

 4

Doubly-Linked Lists
reminder

● the linked lists so far have the limitation that it is
only possible for code to follow references in
one direction in the list, that is, forward

● node removal requires a reference to the node
before the node to be removed

● if each node also keeps a reference to the node
before it, both these problems can be solved

 5

Nodes for Doubly-Linked Lists
private class DLinkedNode<E> {

 private E item; // one element

 private DLinkedNode<E> prev; // two references, one to the node before

 private DLinkedNode<E> next; // and one to the node after

 private DLinkedNode(E value) {

 item = value;

 next = null;

 prev = null;

 }

 private DLinkedNode(E value, DLinkedNode<E> prev, DLinkedNode<E> next) {

 item = value;

 this.next = next;

 this.prev = prev;

 }

}

 6

Doubly-Linked list add

● adding after a given node (node) means updating the previous and
next node's next and prev references:

 DLinkedNode followingNode = node.next;

 node.next = new DLinkedNode (value, node,

 node.next);

 followingNode.prev = node.next;
● in-class exercise (alone or with a friend or two): draw the doubly-

linked list after each of the lines of the above code
● the above code assumes that there is both a previous and next

node
● if not, the code needs special cases
● a circular list, if coded correctly, needs fewer special cases

 7

Doubly-Linked list remove

● removing a given node (node) means updating the node's
predecessor's next field, and the node's successor's prev field:

 node.prev.next = node.next;

 node.next.prev = node.prev;

● here are the special cases for a doubly-linked list that is not circular:

 if ((node == head) && (head.next == null)) {

 head = null; tail = null;

 } else {

 if (node.prev != null)

 node.prev.next = node.next;

 if (node.next != null)

 node.next.prev = node.prev;

 }

 8

Looping over the elements of a
collection

● sometimes we want do something with all of the elements of a
collection

● for example, we might want to print the values
● or we might want to add all the values in a collection of numbers
● we can do a loop with get:

 for (int i = 0; i < List.size(); i++) {

 E element = List.get(i);

 ... // do something with element

 }

● if get takes more than constant time, this is very inefficient: the
outer loop is repeated List.size times, so if the inner loop is
also linear in the list size, the entire loop takes time List.size2.

 9

Efficiently Looping over the
elements of a collection

● for a linked list, get takes linear time
● but accessing a list element if we have a

reference to the node containing the element
only takes constant time

● it is not safe to let the user program directly
have access to this reference

● instead, the reference is encapsulated in an
object called an iterator, which only provides a
small set of operations

 10

using Java iterators

List<E> list = …

for (E element: list) {

 …

}

● Java internally re-writes the above loop as:

Iterator<E> it = list.iterator();

while (it.hasNext()) {

 E element = it.next();

 ….

}

 11

Yes, but what is an iterator?

● an iterator is an object that supports the two
methods hasNext() and next()

● next() provides access to the elements of a
collection

● for example, an iterator for a linked list class would
internally have a reference to the node containing
the next object:

public class LinkedListIterator<E> … {

 LinkedNode<E> node;

● the iterator is a different object than the collection

 12

example

● i1 and i2 are iterators

for the same collection
● advancing i2

does not affect i1
● next() returns the next

element and advances

the iterator

 13

Iterator methods

● a Java iterator only provides two or three
operations:

● E next(), which returns the next element, and
also advances the references

● boolean hasNext(), which returns whether
there is at least one more element

● void remove(), which removes the last element
returned by next() (this method is optional)

● using remove may invalidate any other existing
(concurrent) iterators

 14

Automatic use of iterators

● instead of having to use the while loop to use an iterator,
the for loop has been specialized to call the iterator

LinkedList values = ...

int sum = 0;

for (Integer value: values) {

 sum = sum + value;

}

● Java creates and calls the iterator, but the iterator itself is
not visible in the code

● the same code can loop over arrays

 15

Java for and foreach

● this automated (and invisible) use of iterators with for
loops is called the Java enhanced for statement or for
each statement

● the foreach statement works on any expression that has
a value that satisfies the Iterable interface

● The Iterable interface simply requires an iterator method:

class MyCollection<E>

 implements Iterable<E> {

// return a new iterator

Iterator<E> iterator();

 16

Iterator Implementation

● a Java iterator may or may not be internal to the
collection class

● every Java iterator must have sequential access to the
elements of the collection

● every Java iterator must have at least one variable to
keep track of where it is in the traversal, that is, which
elements have not yet been returned

● See LinkedListIterator.java for a very simple iterator on
linked lists.

● in-class exercise (everyone together): design the code
for the iterator() method of the LinkedList class

http://www2.hawaii.edu/~esb/2013fall.ics211/LinkedListIterator.java.html

 17

ListIterator

● the Java Iterator interface is very general
and reasonably powerful

● sometimes it is useful to be able to move
backwards and forwards, and add or replace as
well as remove elements

● the ListIterator interface adds these
operations to the basic Iterator interface

● it also keeps track of the position and can return
the index of the next or previous item

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

