
 1

Outline

● Big-O analysis in practice
● List interface
● Array lists

 2

Big-O Analysis in Practice

n = 100000; // one hundred thousand

startTimer();

for (int i = 0; i < n; i++) {

 count++;

}

stopTimerAndPrint("example 1", n);

● how much longer does the second loop take than the first?

n = 10000000; // ten million

startTimer();

for (int i = 0; i < n; i++) {

 count++;

}

stopTimerAndPrint("example 1", n);

● how much longer does the third loop take than the first?

n = 100000000; // one hundred million

startTimer();

for (int i = 0; i < n; i++) {

 count++;

}

stopTimerAndPrint("example 1", n);

 3

Big-O Analysis in Practice

n = 1000;

startTimer();

for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 count++;

 }

}

stopTimerAndPrint("example 2", n);

n = 10000;

startTimer();

for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 count++;

 }

}

stopTimerAndPrint("example 2", n);

● how much longer does the second loop take than the first?

 4

Lists

● A List is similar to an array, but may:
● grow or shrink in size
● insert or delete elements at a given position

● there are many lists, usually categorized by how they are
implemented:
● ArrayLists are implemented using arrays (Vectors are similar)
● LinkedLists are implemented using links (references) to objects

● All lists are derived from the abstract class AbstractList, and
implement the List interface (even AbstractList implements the
List interface)

● lists also have operations to search for elements, and do
something with every element of the list

 5

Generic Interfaces

● a list can store object of any one type:
● a list of strings: List<String>
● a list of integers: List<Integer>
● a list of objects: List<Object>

● the notation "List<E>" indicates that the list
interface is parametrized over the type E of objects it
can store

● in this case, E is a type parameter -- logically, it
provides a collection of interfaces, one for each
possible class

 6

Generic Classes

● generic classes can use the same notation as
generic interfaces

● collection classes, which can store objects of
any type, are often generic

● the Java compiler can check that the type
parameter is the same for every use of a
variable: for example, that all operations
involving a List<String> actually store and
retrieve strings

 7

List Interface

public interface list<E> extends Collection<E> {

 E get(int index); // returns object at pos.

 E set(int index, E element); // returns old value

 int indexOf(Object o);// returns index of object

 E remove(int index); // removes object at pos.

 int size(); // returns # of elements

 boolean add(E element); // add at the end of list

 void add(int index, E element); // add at pos.

 ...

}

 8

AbstractList

● AbstractList<E> essentially provides the same
methods as List<E>

● the methods implemented by AbstractList
provide very basic functionality for lists

 9

ArrayList<E> class

● an array list uses an array to store the objects in the list
● the object at position i in the list are found at array index i
● when the array needs to grow, a bigger array is allocated, and

data is copied from the old array to the new array
● this is an expensive operation: it takes time proportional to the

total size of the collection
● in general, the underlying array may have more elements than

the collection
● for example, the array may have 39 elements, but the collection

may only have 22 elements
● an array list always has a capacity (39) greater than or equal

to its size (22)

 10

ArrayList<E> implementation

● must have an actual array of objects of type E
● must keep track of the size
● the capacity is the same as the array length

public class ArrayList<E> {

 protected E [] data;

 protected int size;

 11

ArrayList<E> constructor

@SuppressWarnings("unchecked")

public ArrayList() {

 data = (E []) new Object [16];

}
● Java will not allocate an array with a type that is

not know at compile time
● @SuppressWarnings("unchecked") is used to

suppress warnings about the type conversion
not being checked

 12

Alternative implementation of
ArrayList<E>

protected Object[] data;

. . .

@SuppressWarnings("unchecked")

public E get(int index) {

 if (index < size) {

 return (E)data[index];

 } // else throw exception

}

● all the objects added to the array are necessarily of type E, because that is the only type that can be
a parameter to add

● the compiler doesn’t know this, so we suppress the warning
● the cast is safe, even though the compiler doesn’t know that
● a useful property of a program that the programmer knows and that is always true, is an invariant

● in this case, the invariant is that the elements of data from 0..size-1 are all of type E
● the invariant must be true whenever a public method is called and when a public method returns,

but may not be true in the middle of a method body – for example, in add, we may change size
before we assign the new value

 13

ArrayList<E> adding at the end
simple case

● if there is room, adding at the end is easy:

public boolean add(E value) {

 data [size] = value;

 size++;

 return true;

}

 14

ArrayList<E> adding at the end
making room

● we may need to make room by reallocating the array:

public boolean add(E value) {

 if (size == data.length) {

 data = Arrays.copyOf(data, data.length * 2);

 }

 data [size] = value;

 size++;

 return true;

}

 15

ArrayList<E> adding in the middle

● In-class exercise: (groups of 2 or 3), implement this
method (below) to add a value somewhere in the
middle of the array. Assume that the index is valid
and that there is room in the array, i.e. index >= 0
and index < data.length - 1.

● Your code must shift all the data that is at or after
index, so there is room for one new element

● only use a for loop, not methods from other classes

public void add(int index, E value) {

 16

In-class exercise on big O

● what is the big O for Loops.java?
● what is the big O for the Array list methods:

● add (add at the end and add in the middle)
● remove (remove from the end and remove

from the middle)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

