Outline

* Big-O analysis In practice
* List interface
* Array lists



Big-O Analysis in Practice

n = 100000; // one hundred thousand

startTimer () ;

for (int i = 0; 1 < n; 1i++) {
count++;

}

stopTimerAndPrint ("example 1", n);

* how much longer does the second loop take than the first?
n = 10000000; // ten million
startTimer () ;
for (int 1 = 0; 1 < n; 1i++) {

count++;
}
stopTimerAndPrint ("example 1", n);

* how much longer does the third loop take than the first?
n = 100000000; // one hundred million
startTimer () ;
for (int 1 = 0; 1 < n; 1i++) {

count++;

b

stopTimerAndPrint ("example 1", n);



Big-O Analysis in Practice

n = 1000;
startTimer () ;
for (int 1 = 0; 1 < n; 1i++) {
for (int j = 0; j < n; J++) |
count++;
s

b

stopTimerAndPrint ("example 2", n);
n = 10000;

startTimer () ;

for (int 1 = 0; 1 < n; 1i++) {
for (int j = 0; j < n; Jj++) |
count++;
s
s

stopTimerAndPrint ("example 2", n);

* how much longer does the second loop take than the first?



Lists

e AListis similar to an array, but may:
e grow or shrink in size
* insert or delete elements at a given position

* there are many lists, usually categorized by how they are
Implemented:

* ArrayLists are implemented using arrays (Vectors are similar)
 LinkedLists are implemented using links (references) to objects

e All lists are derived from the abstract class AbstractList, and

Implement the List interface (even AbstractList implements the
List interface)

* lists also have operations to search for elements, and do
something with every element of the list



Generic Interfaces

* a list can store object of any one type:
e alist of strings: L1st<String>
« alist of integers: List<Integer>
e a list of objects: L1st<Object>

e the notation "List<E>" indicates that the list

Interface Is parametrized over the type E of objects it
can store

* In this case, E Is a type parameter -- logically, it
provides a collection of interfaces, one for each
possible class



Generic Classes

* generic classes can use the same notation as
generic interfaces

 collection classes, which can store objects of
any type, are often generic

* the Java compiler can check that the type
parameter is the same for every use of a
variable: for example, that all operations
iInvolving a List<String> actually store and
retrieve strings



L1st Interface

public interface 1list<E> extends Collection<E> {

E get (int index); // returns object at pos.

E set (int index, E element); // returns old value
int indexOf (Object o0);// returns index of object
E remove (int index); // removes object at pos.
int size () ; // returns # of elements
boolean add(E element); // add at the end of list
volid add(int index, E element); // add at pos.



AbstractList

* AbstractList<E> essentially provides the same
methods as List<E>

* the methods implemented by AbstractList
provide very basic functionality for lists



ArrayList<E> class

an array list uses an array to store the objects in the list
the object at position / in the list are found at array index i

when the array needs to grow, a bigger array Iis allocated, and
data is copied from the old array to the new array

this is an expensive operation: it takes time proportional to the
total size of the collection

In general, the underlying array may have more elements than
the collection

for example, the array may have 39 elements, but the collection
may only have 22 elements

an array list always has a capacity (39) greater than or equal
toits size (22)



ArrayList<E> implementation

 must have an actual array of objects of type E

* must keep track of the size

* the capacity Is the same as the array length
public class ArrayList<E> {

orotected E [] data;

orotected Int size:



ArrayList<E> constructor

@SuppressWarnings("unchecked")
public ArraylList() {

data = (E []) new Object [16];
}

* Java will not allocate an array with a type that is
not know at compile time

* @SuppressWarnings("unchecked") is used to
suppress warnings about the type conversion
not being checked

11



Alternative implementation of
ArrayList<E>

protected Object[] data;

@SuppressWarnings("unchecked")
public E get(int index) {
if (index < size) {
return (E)data[index];
} // else throw exception

}

all the objects added to the array are necessarily of type E, because that is the only type that can be
a parameter to add

the compiler doesn’t know this, so we suppress the warning
the cast is safe, even though the compiler doesn’t know that
a useful property of a program that the programmer knows and that is always true, is an invariant

* in this case, the invariant is that the elements of data from 0..size-1 are all of type E

* the invariant must be true whenever a public method is called and when a public method returns,
but may not be true in the middle of a method body — for example, in add, we may change size
before we assign the new value

12



ArrayList<E> adding at the end
simple case

* if there Is room, adding at the end Is easy:
public boolean add(E value) {

data [s1ze] = value;
size++;
return true;

13



ArrayList<E> adding at the end
making room

 we may need to make room by reallocating the array:
public boolean add(E value) {

1f (size == data. length) {
data = Arrays.copyOf(data, data.length * 2);
b

data [size] = value;
Size++;
return true;

14



ArrayList<E> adding In the middle

* In-class exercise: (groups of 2 or 3), implement this
method (below) to add a value somewhere In the
middle of the array. Assume that the index is valid
and that there is room in the array, I.e. index >=0
and index < data.length - 1.

 Your code must shift all the data that is at or after
Index, so there Is room for one new element

* only use a for loop, not methods from other classes
public void add(int index, E value) {

15



In-class exercise on big O

e whatist

e whatist

* add (add at the enc

e

ALS

nig O for Loops.java?

nig O for t

ne Array

and ado

ISt methods:

INn the mid

dle)

* remove (remove from the end and remove
from the middle)

16



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

