ICS 111
More about Methods

 Method design
» Stepwise refinement
* Method tracing
* Variable scope
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Re-using Methods

* Code reuse is good for programmer
efficiency and program correctness:

- reusing an existing method means we don't
have to write it

- an existing method is less likely to have
bugs than a newly-written method

« However, this is only possible if the
method Is sufficiently general
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Method Generality

 There are many choices to be made when designing a
method:

- return type

- nhame

- parameters

- design of the code

* the return type is often dictated by the computation we
want the method to do

* the parameters may be flexible: some choices of
parameters may make the method more general
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Comparison of two Methods

public static void printHello() {
System.out.printin(“Hello world”);

}

public static void printGreeting(String greeting, String to) {
System.out.printin(greeting + “ “ + to);

}

« The second method can be reused for different greetings

« Making a method more general often leads to having more parameters

- but not always!
- more parameters make the method more complicated and harder to use

» Choice of parameters affects the generality of the method
« The name of the method has also changed to reflect its more general functionality
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Method Design

 The method must solve your current needs

 Shorter methods (methods with shorter code) are better
than longer methods

- It's just fine to call other methods from within a method body
* |deally, methods are units of meaning
- when they are, they code in the caller is easy to read:
name = digitName (number / 100) + “ hundred”;
(example from the book, Section 5.7)

- This turns part of a number (such as 321) into a string, such as
“three hundred”
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Method Design:
Stepwise Refinement

 Sometimes it's obvious how to break
down a solution to a problem, by
combining solutions to smaller
problems

 when coding, each of the solutions to
the smaller problems can be a method
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Stepwise Refinement

* Doing an assignment includes:

1. Reading the assignment

2.Doing each of the programming problems

3. Turning in the assignment

* The method for doing step 2 is called more than once
* Now we can write the main method:

int numAssignment = 5;
int numProblems = readAssignment (numAssignment) ;
for (int 1 = 0; 1 < numProblems; 1i++) {

solution += doProgrammingProblem (numAssignment, 1 + 1);

}

submitAssignment (numAssignment, solution);
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Stepwise Refinement: Stubs

* Once the main problem has been subdivided into smaller, easier
problems, we can write the methods to solve the smaller problems

* It is a good idea to test the top-level code before writing these
lower-level methods

 If so, we can just define the lower-level method to do the minimum
that allows the top-level method to still work

* This bare-bones implementation is called a stub
public static String doProgrammingProblem
(int assignmentNumber, int problemNumber) {

return “solution to problem “ + problemNumber + “\n”;
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A real example

 One way to factor a number n is to divide it by
every number x < n by which it is divisible

* Printing the factors requires remembering (in a
variable) whether we have printed a factor before

— If this is the first factor, just print it
- otherwise, print “ * “ before the factor

* Both testing whether a number is divisible by
another number, and printing the factor, can be
delegated to other methods




ICS 111
Code for Factoring

public static void printFactors (int n) {

int factor = 2; // two is the first possible factor
boolean firstPrint = true;
System.out.println(n + “ = *“); // print the number to be factored

while (factor <= n) { // each loop, either increase factor, or make n smaller

if (isDivisible (n, factor)) {
printFactor (factor, firstPrint); // print the factor
firstPrint = false; // we've printed one or more factors already
n =n / factor; // make n smaller

} else { // not divisible: maybe the next int is a factor
factor++; // make factor bigger

}
s

System.out.println(); // after the loop, end the line

I
* the two methods isDivisible and printFactor can initially be stubs while we test this code
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IsDivisible and printFactor stubs

public static boolean 1sDivisible (int n, i1nt factor)

return truey;

}

public static void printFactor (int factor, boolean
firsttime) {

System.out.print ( (factor + “/” + firstTime + “ “);

}
now test the printFactors method:

10 = 2/true 2/false 2/false

the factors are wrong, but indeed 10 can be divided by 2, three
times, before it is less than two

{
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iIsDivisible method

* We can use modulo to test if a number n is divisible by another
number factor

* If they are divisible, the remainder of the division should be zero
public static boolean isDivisible (int n, 1nt factor) {

[¢]

return n % factor == 0;

}
e 10 = 2/true 5/false

e 100 = 2/true 2/false 5/false 5/false

e our printing isn't exactly what we want yet, but we can see that
the results are correct
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printFactor method

printing is just a question of adding or not adding “ * “ before the factor
public static void printFactor (int factor, boolean firsttime) {
System.out.print ((firstTime 2 “” : “ * “) 4+ factor);
I
« and now, we can print the factors of any number!

c2=2
«10=2%*5
«100=2*2*5%5
« 33 =3*11

« 31 =31
«30=2*3%*5

12345 = 3 * 5 * 823
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ummary of Stepwise Refinement

 If we have the high-level view of how to solve a problem, we
can write the code for that high-level view

« Any components that we aren't ready to implement will initially
be stub methods

» Testing with the stubs can give us confidence that the code for
the high-level part is correct

 Once the main part is working for us, we go ahead and
implement each stub

- we test and correct any errors after implementing each stub

« Stepwise refinement makes it easier to identify any problems
early, so we know where to look for the solution
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Tracing Choices

» Suppose you are tracing this code:

if (isDivisible (n, factor)) {
printFactor (factor, firstPrint); // print the factor
firstPrint = false; // we've printed one or more factors already
n = n / factor; // make n smaller

} else { // not divisible: maybe the next int is a factor
factor++; // make factor bigger
t
 When you get to the first method call, what do you do?

- You can enter the method, and trace the code of the method body

- or, you can assume that the method does the right thing (return true or false, as appropriate) without
going into the details

» Both of these methods of tracing are useful:

- the first is useful for understanding how each method does what it does
- the second is more useful (and faster) in understanding the top-level code
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Tracing Individual Methods

* Treat parameters as you would
variables

- record their value, track these values when
they change

e Oon a return, record the value returned
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Variable Scope and Unigueness

 We have seen that variables are in scope
from their definition to the end of the
enclosing block

* |t Is an error in Java to have two variables
with the same name and overlapping scope

|t is OK to have variables with the same
name as long as the scopes don't overlap
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Unigueness Examples

for (int 1 = 0; i < 10; i++)
for (int 1 = 77; 1 < 99; i++) {

* the second declaration of i is in the scope of the first and
the compiler will complain

* Variables with different scopes:
for (int 1 = 0; 1 < 10; 1++) A
}
for (int 1 = 77; 1 < 99; 1i++) {
}

» the two scopes don't overlap
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Local and Global Variables

 variables in different methods can have the same name

 we say that variables are local to the method

- as far as scoping is concerned, method parameters like local
variables

e variables can also be declared outside methods: these are
global variables

« global variables can be very useful, but are harder to use
correctly, and for now you should not use global variables

- once you do use them, choose the name carefully so it doesn't
conflict with the names of other global variables




Summary

» Carefully designed methods are more likely to be
reused

* In stepwise refinement, we create the high-level
code first, using stubs for the lower-level methods

* This gives us confidence that the high-level code
works, and that we have identified the correct
lower-level methods

* In tracing, we can either go into method execution,
or assume that methods do what we expect them
to do

* Variable names must be unique within the scope of
the variable

- It Is a good idea to give variables the smallest scope
that still makes them useful
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