ICS 111
More about Methods

 Method design
» Stepwise refinement
* Method tracing
* Variable scope

ICS 111
Re-using Methods

* Code reuse is good for programmer
efficiency and program correctness:

- reusing an existing method means we don't
have to write it

- an existing method is less likely to have
bugs than a newly-written method

« However, this is only possible if the
method Is sufficiently general

ICS 111
Method Generality

 There are many choices to be made when designing a
method:

- return type

- nhame

- parameters

- design of the code

* the return type is often dictated by the computation we
want the method to do

* the parameters may be flexible: some choices of
parameters may make the method more general

ICS 111
Comparison of two Methods

public static void printHello() {
System.out.printin(“Hello world”);

}

public static void printGreeting(String greeting, String to) {
System.out.printin(greeting + “ “ + to);

}

« The second method can be reused for different greetings

« Making a method more general often leads to having more parameters

- but not always!
- more parameters make the method more complicated and harder to use

» Choice of parameters affects the generality of the method
« The name of the method has also changed to reflect its more general functionality

ICS 111
Method Design

 The method must solve your current needs

 Shorter methods (methods with shorter code) are better
than longer methods

- It's just fine to call other methods from within a method body
* |deally, methods are units of meaning
- when they are, they code in the caller is easy to read:
name = digitName (number / 100) + “ hundred”;
(example from the book, Section 5.7)

- This turns part of a number (such as 321) into a string, such as
“three hundred”

ICS 111
Method Design:
Stepwise Refinement

 Sometimes it's obvious how to break
down a solution to a problem, by
combining solutions to smaller
problems

 when coding, each of the solutions to
the smaller problems can be a method

ICS 111
Stepwise Refinement

* Doing an assignment includes:

1. Reading the assignment

2.Doing each of the programming problems

3. Turning in the assignment

* The method for doing step 2 is called more than once
* Now we can write the main method:

int numAssignment = 5;
int numProblems = readAssignment (numAssignment) ;
for (int 1 = 0; 1 < numProblems; 1i++) {

solution += doProgrammingProblem (numAssignment, 1 + 1);

}

submitAssignment (numAssignment, solution);

ICS 111
Stepwise Refinement: Stubs

* Once the main problem has been subdivided into smaller, easier
problems, we can write the methods to solve the smaller problems

* It is a good idea to test the top-level code before writing these
lower-level methods

 If so, we can just define the lower-level method to do the minimum
that allows the top-level method to still work

* This bare-bones implementation is called a stub
public static String doProgrammingProblem
(int assignmentNumber, int problemNumber) {

return “solution to problem “ + problemNumber + “\n”;

ICS 111
A real example

 One way to factor a number n is to divide it by
every number x < n by which it is divisible

* Printing the factors requires remembering (in a
variable) whether we have printed a factor before

— If this is the first factor, just print it
- otherwise, print “ * “ before the factor

* Both testing whether a number is divisible by
another number, and printing the factor, can be
delegated to other methods

ICS 111
Code for Factoring

public static void printFactors (int n) {

int factor = 2; // two is the first possible factor
boolean firstPrint = true;
System.out.println(n + “ = *“); // print the number to be factored

while (factor <= n) { // each loop, either increase factor, or make n smaller

if (isDivisible (n, factor)) {
printFactor (factor, firstPrint); // print the factor
firstPrint = false; // we've printed one or more factors already
n =n / factor; // make n smaller

} else { // not divisible: maybe the next int is a factor
factor++; // make factor bigger

}
s

System.out.println(); // after the loop, end the line

I
* the two methods isDivisible and printFactor can initially be stubs while we test this code

ICS 111
IsDivisible and printFactor stubs

public static boolean 1sDivisible (int n, i1nt factor)

return truey;

}

public static void printFactor (int factor, boolean
firsttime) {

System.out.print ((factor + “/” + firstTime + “ “);

}
now test the printFactors method:

10 = 2/true 2/false 2/false

the factors are wrong, but indeed 10 can be divided by 2, three
times, before it is less than two

{

ICS 111
iIsDivisible method

* We can use modulo to test if a number n is divisible by another
number factor

* If they are divisible, the remainder of the division should be zero
public static boolean isDivisible (int n, 1nt factor) {

[¢]

return n % factor == 0;

}
e 10 = 2/true 5/false

e 100 = 2/true 2/false 5/false 5/false

e our printing isn't exactly what we want yet, but we can see that
the results are correct

ICS 111
printFactor method

printing is just a question of adding or not adding “ * “ before the factor
public static void printFactor (int factor, boolean firsttime) {
System.out.print ((firstTime 2 “” : “ * “) 4+ factor);
I
« and now, we can print the factors of any number!

c2=2
«10=2%*5
«100=2*2*5%5
« 33 =3*11

« 31 =31
«30=2*3%*5

12345 = 3 * 5 * 823

ICS 111
ummary of Stepwise Refinement

 If we have the high-level view of how to solve a problem, we
can write the code for that high-level view

« Any components that we aren't ready to implement will initially
be stub methods

» Testing with the stubs can give us confidence that the code for
the high-level part is correct

 Once the main part is working for us, we go ahead and
implement each stub

- we test and correct any errors after implementing each stub

« Stepwise refinement makes it easier to identify any problems
early, so we know where to look for the solution

ICS 111
Tracing Choices

» Suppose you are tracing this code:

if (isDivisible (n, factor)) {
printFactor (factor, firstPrint); // print the factor
firstPrint = false; // we've printed one or more factors already
n = n / factor; // make n smaller

} else { // not divisible: maybe the next int is a factor
factor++; // make factor bigger
t
 When you get to the first method call, what do you do?

- You can enter the method, and trace the code of the method body

- or, you can assume that the method does the right thing (return true or false, as appropriate) without
going into the details

» Both of these methods of tracing are useful:

- the first is useful for understanding how each method does what it does
- the second is more useful (and faster) in understanding the top-level code

ICS 111
Tracing Individual Methods

* Treat parameters as you would
variables

- record their value, track these values when
they change

e Oon a return, record the value returned

ICS 111
Variable Scope and Unigueness

 We have seen that variables are in scope
from their definition to the end of the
enclosing block

* |t Is an error in Java to have two variables
with the same name and overlapping scope

|t is OK to have variables with the same
name as long as the scopes don't overlap

ICS 111
Unigueness Examples

for (int 1 = 0; i < 10; i++)
for (int 1 = 77; 1 < 99; i++) {

* the second declaration of i is in the scope of the first and
the compiler will complain

* Variables with different scopes:
for (int 1 = 0; 1 < 10; 1++) A
}
for (int 1 = 77; 1 < 99; 1i++) {
}

» the two scopes don't overlap

ICS 111
Local and Global Variables

 variables in different methods can have the same name

 we say that variables are local to the method

- as far as scoping is concerned, method parameters like local
variables

e variables can also be declared outside methods: these are
global variables

« global variables can be very useful, but are harder to use
correctly, and for now you should not use global variables

- once you do use them, choose the name carefully so it doesn't
conflict with the names of other global variables

Summary

» Carefully designed methods are more likely to be
reused

* In stepwise refinement, we create the high-level
code first, using stubs for the lower-level methods

* This gives us confidence that the high-level code
works, and that we have identified the correct
lower-level methods

* In tracing, we can either go into method execution,
or assume that methods do what we expect them
to do

* Variable names must be unique within the scope of
the variable

- It Is a good idea to give variables the smallest scope
that still makes them useful

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

