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ICS 111
Review of the material until now

● Basic Programming Constructs
● Sequence
● Conditional
● Repetition/Loops
● Program Structure
● Parallel Execution
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ICS 111
Basic Programming Constructs

● The basic steps of a computer are arithmetic and 
logical

● arithmetic operations: +, -, *, /, %
● arithmetic comparisons: ==, !=, <, <=, >, >=
● boolean operators: &&, ||, !

– boolean expressions using && and || apply short-
circuit evaluation, evaluating only the left operand if 
its value is sufficient to determine the result of the 
expression
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Basic Programming: Strings

● Some of our basic operations work on strings
● System.out.println, .print, .printf

● given a String str, we can have:
● int len = str.length();
● String sub = str.substring(int startIndex);
● String sub = str.substring(int startIndex, int nextIndex);
● char c = str.charAt(int index);
● boolean eq = str.equals(String s);
● int comparison = str.compareTo (String s);

● each of these is a method in the String class
● calling a method is a primitive operation, just like the arithmetic and 

logical operations
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Basic Programming: Math Library

● java.lang.Math

● familiar math functions, including 
powers, square root, and trigonometry

● Math.random()
● again, calling a method is a primitive 

operation, just like the arithmetic and 
logical operations
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ICS 111
Variables and Types

● To remember the result of a computation (the value 
of an expression), we can use variables

● a variable declaration begins with a type followed 
by the variable name

● in ICS 111, every variable declaration must include 
the variable initialization

int x = 3;

String str = “hello world”;

boolean isGood = true;



  6

ICS 111
Basic Programming: methods

● As well as using predefined methods, you can write your 
own methods

● public static returnType methodName (parameters)

● return type is void if the method doesn't return anything
● if the return type is not void, the method body must end 

with a return statement
● the method may contain arbitrary code
● the parameter list is a comma-separated list of variable 

declarations, with each variable initialized by the caller
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Calling Methods

● the parameter list is a comma-separated list of variable 
declarations, with each variable initialized by the caller

public String substring (int startIndex) { ...

● in the body of substring, startIndex can be treated like 
any variable

● when another piece of code calls (invokes)

String sub = hello.substring(10)

this is equivalent to initializing startIndex = 10 at the 
beginning of the body of the method substring

● sub is initialized to whatever value substring returns
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Some Special Words

● An expression (e.g. x + 2) defines a computation
● every expression has a type (e.g. int) and evaluates to a value (e.g. 10)
● A variable has a type and stores a value
● A variable must be declared before it can be used
● An assignment (eg. x = 3) stores a value into a variable
● An initialization is the first assignment to a variable

– initialization is often (in ICS 111, always) done when the variable is declared
● Examples of variable declarations and initializations:

– int x = 3;
– String hello = “hello world”;

● A method definition, or method declaration, starts with the method header, including 
the return type, method name, and parameters/arguments, and continues with the 
method body

● A statement is the basic unit of execution. Statements we've seen so far include method 
calls, assignments, and compound statements including conditionals and loops
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Sequence of Statements

● A sequence of statements is so natural that most 
programming languages define a sequence 
simply by writing the statements in the order to 
be executed

● The body of a method, of a conditional, or of a 
loop, is usually a sequence of declarations and 
statements

x = 3;

y = x + 7;
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Conditionals

● Statements (and sequences of statements) 
can be executed conditionally, that is, only 
if a boolean expression is true
if (condition) { body of if }

else if (condition2) { body of else if }

else { body of else }

● the else if and the else parts are each 
optional
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Switch Statements

● Test for several possible constant values at once

switch (x) {

case 1: ... break;

case 2: ... break;

case 3: ... break;

default: ... break;

}

● x is evaluated only once, which is convenient if x stands for a complicated expression such 
as Math.round(2 * Math.PI)

● remember to have break at the end of each case!
– unless you want to “fall through”

● the switch/case notation is easier to read at a glance than a complicated set of if/else if/else 
statements
– such as
if (x == 1) { ... } else if (x == 2) { ... } else if (x == 3) { ... } else {... }
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Conditional Expressions

● If statements and switch statements provide 
conditional evaluation of statements

● What if you wanted to conditionally evaluate 
expressions?

(condition) ? true-value : false-value
char c = (x >= s.length()) ? ' ' : s.charAt(x);

● this either evaluates to the constant blank 
character ' ', or to the value of the expression 
s.charAt(x)
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Loops

● Do “the same thing” multiple times
● “the same thing” will actually do 

something different each time, for 
example operate on a different user 
input, or at a different index of a string

● Loop while a condition is true
– stop when the condition becomes false
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ICS 111
While Loops

while (condition) { body of loop }

● to prevent infinite loops, the body of the 
loop must affect the condition
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Trivia: replacing if with while

● if (condition) { body of if }
● can be rewritten as

while (condition) {

  body of if;

  condition = false;

}

● This is less clear than using if, so is never used in 
practice
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Do...While Loops

do {

  body of loop

} while (condition);
● the body of the loop is executed at least 

once
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For Loops

for (initialization; condition; update) {

  body of loop

}

● the initialization is done before the beginning of the 
loop, and may declare variables local to the loop

● the condition is tested before every execution of the 
loop

● the update is performed at the end of each loop
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break and return

● break and return statements are similar 
in ending execution of the enclosing 
loop or switch statements (break) or the 
enclosing method (return)

● return statements must specify a value 
if the method return type is not void 
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ICS 111
Syntax and Semantics

● Programming languages have syntax and 
semantics

● Syntax defines what programs are legal
● Semantics defines the meaning of legal 

programs
● A syntactically correct program may compile 

and execute, but may not give the desired 
result
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Program Structure

● In writing correct programs, it is helpful to make 
programs as clear as possible

● Comments and meaningful variable and method 
names help explain the writer's thinking

● Creating methods to handle sub-tasks of a complicated 
program makes it easier to understand both the main 
part of the program and the methods
– it should be possible to understand each method in isolation
– the main part of the program calls these methods
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Program Structure: Methods

● If a program can be divided into clear, understandable 
parts, each part can be implemented as a separate 
method

● Then the main part of the program simply calls the 
individual methods

● Methods that are called from multiple places in the 
code provide code reuse

● Code reuse is advantageous because the work of 
writing and debugging a single method can be used 
more than once
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Program Structure: 

Understanding
● You must understand how a program will compute its results before you can write the 

program
– Clear thinking is the key
– The book has several examples relating thinking and coding, including:

● first do it by hand
● tracing programs
● test cases
● flowcharts
● storyboards

● When you are first learning to program, you are learning the thinking as well as the 
programming

● Errors and mistakes are a good sign that you are trying something you haven't done 
before
– or that you are human...

● Compiler errors are helpful in fixing syntax errors, and some simple semantic errors
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Program Structure: Visual

● Correct indentation helps in 
understanding programs

● Smaller methods are easier to 
understand than longer methods

● If a method or a variable has an 
understandable purpose, it should be 
easy to find a meaningful name for it
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Parallel Execution

● Similar to a sequence, but statements may be executed in any 
order

● Best for statements that do not depend on each other:
– x = x + 1; and y = y + 2; can be executed in parallel
– but x = x + 1; and boolean g = x > 0; should be executed 

sequentially
● Parallel execution improves performance when your processor is 

multicore: multiple statements can be executed simultaneously
● This class doesn't focus on performance!  Nor on parallel 

execution
● ICS 211 will start to consider performance
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Summary

● Many basic building blocks, including 
all the method calls

● Building blocks are combined using 
sequences, loops, and conditionals 
to write useful programs

● Methods abstract away 
understandable functions which can 
be used without knowing the details 
of the implementation
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