
 1

ICS 111
Review of the material until now

● Basic Programming Constructs
● Sequence
● Conditional
● Repetition/Loops
● Program Structure
● Parallel Execution

 2

ICS 111
Basic Programming Constructs

● The basic steps of a computer are arithmetic and
logical

● arithmetic operations: +, -, *, /, %
● arithmetic comparisons: ==, !=, <, <=, >, >=
● boolean operators: &&, ||, !

– boolean expressions using && and || apply short-
circuit evaluation, evaluating only the left operand if
its value is sufficient to determine the result of the
expression

 3

ICS 111
Basic Programming: Strings

● Some of our basic operations work on strings
● System.out.println, .print, .printf

● given a String str, we can have:
● int len = str.length();
● String sub = str.substring(int startIndex);
● String sub = str.substring(int startIndex, int nextIndex);
● char c = str.charAt(int index);
● boolean eq = str.equals(String s);
● int comparison = str.compareTo (String s);

● each of these is a method in the String class
● calling a method is a primitive operation, just like the arithmetic and

logical operations

 4

ICS 111
Basic Programming: Math Library

● java.lang.Math

● familiar math functions, including
powers, square root, and trigonometry

● Math.random()
● again, calling a method is a primitive

operation, just like the arithmetic and
logical operations

 5

ICS 111
Variables and Types

● To remember the result of a computation (the value
of an expression), we can use variables

● a variable declaration begins with a type followed
by the variable name

● in ICS 111, every variable declaration must include
the variable initialization

int x = 3;

String str = “hello world”;

boolean isGood = true;

 6

ICS 111
Basic Programming: methods

● As well as using predefined methods, you can write your
own methods

● public static returnType methodName (parameters)

● return type is void if the method doesn't return anything
● if the return type is not void, the method body must end

with a return statement
● the method may contain arbitrary code
● the parameter list is a comma-separated list of variable

declarations, with each variable initialized by the caller

 7

ICS 111
Calling Methods

● the parameter list is a comma-separated list of variable
declarations, with each variable initialized by the caller

public String substring (int startIndex) { ...

● in the body of substring, startIndex can be treated like
any variable

● when another piece of code calls (invokes)

String sub = hello.substring(10)

this is equivalent to initializing startIndex = 10 at the
beginning of the body of the method substring

● sub is initialized to whatever value substring returns

 8

ICS 111
Some Special Words

● An expression (e.g. x + 2) defines a computation
● every expression has a type (e.g. int) and evaluates to a value (e.g. 10)
● A variable has a type and stores a value
● A variable must be declared before it can be used
● An assignment (eg. x = 3) stores a value into a variable
● An initialization is the first assignment to a variable

– initialization is often (in ICS 111, always) done when the variable is declared
● Examples of variable declarations and initializations:

– int x = 3;
– String hello = “hello world”;

● A method definition, or method declaration, starts with the method header, including
the return type, method name, and parameters/arguments, and continues with the
method body

● A statement is the basic unit of execution. Statements we've seen so far include method
calls, assignments, and compound statements including conditionals and loops

 9

ICS 111
Sequence of Statements

● A sequence of statements is so natural that most
programming languages define a sequence
simply by writing the statements in the order to
be executed

● The body of a method, of a conditional, or of a
loop, is usually a sequence of declarations and
statements

x = 3;

y = x + 7;

 10

ICS 111
Conditionals

● Statements (and sequences of statements)
can be executed conditionally, that is, only
if a boolean expression is true
if (condition) { body of if }

else if (condition2) { body of else if }

else { body of else }

● the else if and the else parts are each
optional

 11

ICS 111
Switch Statements

● Test for several possible constant values at once

switch (x) {

case 1: ... break;

case 2: ... break;

case 3: ... break;

default: ... break;

}

● x is evaluated only once, which is convenient if x stands for a complicated expression such
as Math.round(2 * Math.PI)

● remember to have break at the end of each case!
– unless you want to “fall through”

● the switch/case notation is easier to read at a glance than a complicated set of if/else if/else
statements
– such as
if (x == 1) { ... } else if (x == 2) { ... } else if (x == 3) { ... } else {... }

 12

ICS 111
Conditional Expressions

● If statements and switch statements provide
conditional evaluation of statements

● What if you wanted to conditionally evaluate
expressions?

(condition) ? true-value : false-value
char c = (x >= s.length()) ? ' ' : s.charAt(x);

● this either evaluates to the constant blank
character ' ', or to the value of the expression
s.charAt(x)

 13

ICS 111
Loops

● Do “the same thing” multiple times
● “the same thing” will actually do

something different each time, for
example operate on a different user
input, or at a different index of a string

● Loop while a condition is true
– stop when the condition becomes false

 14

ICS 111
While Loops

while (condition) { body of loop }

● to prevent infinite loops, the body of the
loop must affect the condition

 15

ICS 111
Trivia: replacing if with while

● if (condition) { body of if }
● can be rewritten as

while (condition) {

 body of if;

 condition = false;

}

● This is less clear than using if, so is never used in
practice

 16

ICS 111
Do...While Loops

do {

 body of loop

} while (condition);
● the body of the loop is executed at least

once

 17

ICS 111
For Loops

for (initialization; condition; update) {

 body of loop

}

● the initialization is done before the beginning of the
loop, and may declare variables local to the loop

● the condition is tested before every execution of the
loop

● the update is performed at the end of each loop

 18

ICS 111
break and return

● break and return statements are similar
in ending execution of the enclosing
loop or switch statements (break) or the
enclosing method (return)

● return statements must specify a value
if the method return type is not void

 19

ICS 111
Syntax and Semantics

● Programming languages have syntax and
semantics

● Syntax defines what programs are legal
● Semantics defines the meaning of legal

programs
● A syntactically correct program may compile

and execute, but may not give the desired
result

 20

ICS 111
Program Structure

● In writing correct programs, it is helpful to make
programs as clear as possible

● Comments and meaningful variable and method
names help explain the writer's thinking

● Creating methods to handle sub-tasks of a complicated
program makes it easier to understand both the main
part of the program and the methods
– it should be possible to understand each method in isolation
– the main part of the program calls these methods

 21

ICS 111
Program Structure: Methods

● If a program can be divided into clear, understandable
parts, each part can be implemented as a separate
method

● Then the main part of the program simply calls the
individual methods

● Methods that are called from multiple places in the
code provide code reuse

● Code reuse is advantageous because the work of
writing and debugging a single method can be used
more than once

 22

ICS 111
Program Structure:

Understanding
● You must understand how a program will compute its results before you can write the

program
– Clear thinking is the key
– The book has several examples relating thinking and coding, including:

● first do it by hand
● tracing programs
● test cases
● flowcharts
● storyboards

● When you are first learning to program, you are learning the thinking as well as the
programming

● Errors and mistakes are a good sign that you are trying something you haven't done
before
– or that you are human...

● Compiler errors are helpful in fixing syntax errors, and some simple semantic errors

 23

ICS 111
Program Structure: Visual

● Correct indentation helps in
understanding programs

● Smaller methods are easier to
understand than longer methods

● If a method or a variable has an
understandable purpose, it should be
easy to find a meaningful name for it

 24

ICS 111
Parallel Execution

● Similar to a sequence, but statements may be executed in any
order

● Best for statements that do not depend on each other:
– x = x + 1; and y = y + 2; can be executed in parallel
– but x = x + 1; and boolean g = x > 0; should be executed

sequentially
● Parallel execution improves performance when your processor is

multicore: multiple statements can be executed simultaneously
● This class doesn't focus on performance! Nor on parallel

execution
● ICS 211 will start to consider performance

 25

Summary

● Many basic building blocks, including
all the method calls

● Building blocks are combined using
sequences, loops, and conditionals
to write useful programs

● Methods abstract away
understandable functions which can
be used without knowing the details
of the implementation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

