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ICS 111
Java Comparisons, Booleans,
Problem-Solving Techniques

● Review: Java Arithmetic Comparisons
● Java String Comparisons
● Boolean Operators
● Problem Solving
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Review:
Java Arithmetic Comparisons

● a == b is true if a has the same numeric 
value as b

● a != b is true if a does not have the same 
numeric value as b

● a < b, a <= b, a > b, a >= b are true if a is 
less than b, less than or equal to b, greater 
than b, or greater than or equal to be

● and otherwise, each of these is false
● reminder: = is assignment, == is comparison
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Precedence of Comparisons

● These comparison operators are called 
relational operators
– because they relate one value to another

● relational operators have lower 
precedence than arithmetic operators:

(a + 1 > b) means ((a + 1) > b)
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String Equality Comparison

● You can compare strings with ==
● However, a == b is true only if the strings a and b are at 

the same location in memory
– useful sometimes
– but not at this stage in your career

● Instead, compare with String.equals:
String hello = “Hello world”;

if (hello.equals(“Hello world”)) { ...

● self-test exercise: which of these are true?
hello.equals(“hello”)

hello.substring(6).equals(“world”)

hello.substring(6,7).equals(“w”)
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String Equality Self-Test: Results

● self-test exercise: which of these are 
true?

hello.equals(“Hello”)

hello.substring(6).equals(“world”)

hello.substring(6,7).equals(“w”)

● The second and the third are true.  The 
first is not, because “Hello world” is not 
equal to “Hello”



  6

Alphabetic Comparisons

● We all know how to alphabetize strings
● Intuitively, “a” < “b”
● But which of “A” and “a” is less?
● There is a standard called the American Standard Code for 

Information Interchange, or ASCII (pr. ask-key)
● digits < uppercase < lowercase

– the whole set at wikipedia
● The international equivalent is Unicode

– including UTF-8, UTF-16
● alphabetic comparisons only make sense between 

characters in the same language

https://en.wikipedia.org/wiki/ASCII#Character_set
https://en.wikipedia.org/wiki/Unicode
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String Alphabetic Comparisons
in Java

● Just as we usually use String.equals instead of ==, we use 
String.compareTo(s) instead of < to compare strings

if (String.compareTo(s) < 0) ...

● String.compareTo(s) returns an integer
– an integer < 0 if String comes before s
– an integer > 0 if String comes after s
– 0 if String.equals(s)

● So we can use any arithmetic relational operator, with 
String.compareTo(s) on the left, and zero on the right to 
compare two strings
– instead of saying if (a >= b)
– we say if (a.compareTo(b) >= 0)
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String Comparison Examples

String hello = “hello, world”;

● hello.compareTo(“world”) < 0 is true
– “hello, world” is alphabetically before “world”

● hello.compareTo(“hello”) < 0 is false
– because “hello” is a shorter string than hello, so 

“hello” comes first

String abc = “abc”;

● abc.compareTo(hello) < 0 is true
● hello.compareTo(abc) < 0 is false
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Boolean Operator Review

● We have already seen the basic boolean 
operators && (and), || (or), ! (not)

● the result of a && b is only true if a is 
true and b is true

● the result of a || b is true if a is true, b 
is true, or both are true

● the result of !a is true if a is false
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Boolean Operators:
A different Perspective

● In Java, true and false are separate values, they are not 
integers

● But some programming languages do not have a 
separate boolean type

● Instead, they use 0 for false, and 1 or any other integer 
for true

● Then, && is the same as multiplication:
– true * true = true, but true * 0, 0 * true, 0 * 0 = 0

● || is the similar to addition
– false + false = false, but true + 0, true + true, 0 + true = 

true
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Boolean Operator Precedence

● The precedence of the boolean operators is less 
than that of relational operators
– a + 1 > 3 && a < 4 means

((a + 1) > 3) && (a < 4)
● && has greater precedence than ||

– so a && b || c means

(a && b) || c
● This precedence is modeled on the analogy of && 

to multiplication, and || to addition
● ! has high precedence, like the negation operator - 
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Boolean Operators:
Short-Circuit Evaluation

int x = 3

if (x > 0 || x++ > 1) {

}

● What is the value of x after this execution?
● Java evaluates expressions left-to-right
● If the left operand of an || is true, Java knows it does 

not have to evaluate the right operand
● Similarly if the left operand of an && is false
● So Java does not evaluate x++ > 1, and x remains at 

three
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Short-Circuit Evaluation
Practical Examples

● Division by zero in Java causes an error
– really, an exception, but for now they look like errors

● We can test for the quotient being non-zero, then divide by that 
quotient in the same expression, without fear of triggering the 
exception

if (q != 0 && (2222 / q) == z) {

● When we talk about arrays (around Oct 7th), we may want to 
test for a valid array index, then use that index to access an 
array element
– We can do all this in a single boolean expression!
if (index < a.length && a [index] > 0) ...

– again, this code will make more sense once we learn arrays
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More Java

● Dangling else
● Enumeration types
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Dangling else

● Suppose you have a nested if,
● and it is so simple you don't want to use braces

if (a)

if (b)

System.out.println(“a and b”);

else

System.out.println(“not sure!”);

● Which of the two if statements does the else belong to?  Instead 
of “not sure”, we could print:
– “a and not b”, if the else belongs to the second if or
– “not a”, if the else belongs to the first if

● In Java, else matches the nearest if, so “a and not b” is correct
● However, this is confusing!
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Dangling else Solutions

● Always use the curly braces for if
– remember that we are trying to write clear 

code
– this is part of the program structure

● If you are reading someone else's code, 
remember that an else goes with the 
innermost matching if
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Enumeration Types in Java
Motivation

● When a variable can only have a few different values, we can 
represent it using an int or a string

● For example, if using a variable to represent animal, 
vegetable, or mineral,

int category = 1; // 1 animal, 2 vegetable, 3 mineral

String category = “animal”;

● If we do this, the Java compiler doesn't notice when we assign 
a “wrong” value such as 5 or “food”

● To have the compiler check our work, we can create a special 
Java data type that only has the values we plan to use
– For example, we may call it Group
Group category = ANIMAL;
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Enumeration Types in Java

● Enumeration types only work with a finite number of values
● All of these must be listed in the declaration of the type

public enum Group { ANIMAL, VEGETABLE, MINERAL }

(listing all possible values is called enumerating)
● The values are constant, so we write them in all upper-case
● Then we can compare with == or switch

switch (category) {

case ANIMAL: System.out.println (“meeow”); break;

case MINERAL: System.out.println (“thud”); break;

default: break; 

}
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Problem Solving in Java

● Tracing Programs
● Test Cases
● Logging
● Flowcharts
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Tracing Programs

● Humans can do anything a computer can do
– only more slowly, and not as accurately

● When we are confused by a program (or part of a program), we 
can execute it by hand

● We can record the values of variables on paper or on a computer
– don't delete the old values -- just write the new values near the old 

ones, so it is clear which value is current
– should also record what the program prints

● When we see an “if”, we must evaluate the condition, and only 
execute the relevant part

● This is a very useful learning tool too!
● See Programming Tip 3.5 in the textbook for a detailed example
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Test Cases

● A real program has inputs that affect the computation
● Conditionals may do different things depending on the value of 

these inputs
● Ideally, we test the program:

– in such a way that every branch of every conditional is executed at least 
once

– for all values that are near the boundary of a condition
– e.g. if the condition is  x > 3, test for values of 2, 3, and 4
– also test for conditions that the programmer might have forgotten about, 

especially 0 and -1
● When we test, we have to verify that the result is correct, so we 

have to know what results to expect from the program
● You can develop test cases before writing code!
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Logging

● Print statements are useful to try to see what 
your program is doing

● But when running the program in daily life, it is 
better not to have such print statements

● java.util.logging.Logger lets you turn such print 
statements on and off just once for your entire 
program
– rather than having to find and fix each print 

statement
● Full documentation

https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/Logger.html
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Flowcharts

● Flowcharts are a graphical way of showing the 
structure of a program

●         is used to show a decision point.

         A true arrow leads out of one corner,

 a false arrow out of another corner
●                 is used to show any other task

               arrows come in from above, leave below
● Flowcharts are good for people who think visually!
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Flowchart Example

answer correct?                  full score

zero score
More details and 
examples in the 
textbook, section 3.5
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Summary

● Comparing:
– Numbers: <, <=, ==, !=, >, >=
– Strings:

● String.equals()
● String.compareTo() combined with

<, <=, ==, !=, >, >=
● Boolean expressions, short-circuit evaluation
● Dangling else, enumeration types
● Problem Solving: Tracing, test cases, logging, 

flowcharts
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