
 1

ICS 111
Java Comparisons, Booleans,
Problem-Solving Techniques

● Review: Java Arithmetic Comparisons
● Java String Comparisons
● Boolean Operators
● Problem Solving

 2

Review:
Java Arithmetic Comparisons

● a == b is true if a has the same numeric
value as b

● a != b is true if a does not have the same
numeric value as b

● a < b, a <= b, a > b, a >= b are true if a is
less than b, less than or equal to b, greater
than b, or greater than or equal to be

● and otherwise, each of these is false
● reminder: = is assignment, == is comparison

 3

Precedence of Comparisons

● These comparison operators are called
relational operators
– because they relate one value to another

● relational operators have lower
precedence than arithmetic operators:

(a + 1 > b) means ((a + 1) > b)

 4

String Equality Comparison

● You can compare strings with ==
● However, a == b is true only if the strings a and b are at

the same location in memory
– useful sometimes
– but not at this stage in your career

● Instead, compare with String.equals:
String hello = “Hello world”;

if (hello.equals(“Hello world”)) { ...

● self-test exercise: which of these are true?
hello.equals(“hello”)

hello.substring(6).equals(“world”)

hello.substring(6,7).equals(“w”)

 5

String Equality Self-Test: Results

● self-test exercise: which of these are
true?

hello.equals(“Hello”)

hello.substring(6).equals(“world”)

hello.substring(6,7).equals(“w”)

● The second and the third are true. The
first is not, because “Hello world” is not
equal to “Hello”

 6

Alphabetic Comparisons

● We all know how to alphabetize strings
● Intuitively, “a” < “b”
● But which of “A” and “a” is less?
● There is a standard called the American Standard Code for

Information Interchange, or ASCII (pr. ask-key)
● digits < uppercase < lowercase

– the whole set at wikipedia
● The international equivalent is Unicode

– including UTF-8, UTF-16
● alphabetic comparisons only make sense between

characters in the same language

https://en.wikipedia.org/wiki/ASCII#Character_set
https://en.wikipedia.org/wiki/Unicode

 7

String Alphabetic Comparisons
in Java

● Just as we usually use String.equals instead of ==, we use
String.compareTo(s) instead of < to compare strings

if (String.compareTo(s) < 0) ...

● String.compareTo(s) returns an integer
– an integer < 0 if String comes before s
– an integer > 0 if String comes after s
– 0 if String.equals(s)

● So we can use any arithmetic relational operator, with
String.compareTo(s) on the left, and zero on the right to
compare two strings
– instead of saying if (a >= b)
– we say if (a.compareTo(b) >= 0)

 8

String Comparison Examples

String hello = “hello, world”;

● hello.compareTo(“world”) < 0 is true
– “hello, world” is alphabetically before “world”

● hello.compareTo(“hello”) < 0 is false
– because “hello” is a shorter string than hello, so

“hello” comes first

String abc = “abc”;

● abc.compareTo(hello) < 0 is true
● hello.compareTo(abc) < 0 is false

 9

Boolean Operator Review

● We have already seen the basic boolean
operators && (and), || (or), ! (not)

● the result of a && b is only true if a is
true and b is true

● the result of a || b is true if a is true, b
is true, or both are true

● the result of !a is true if a is false

 10

Boolean Operators:
A different Perspective

● In Java, true and false are separate values, they are not
integers

● But some programming languages do not have a
separate boolean type

● Instead, they use 0 for false, and 1 or any other integer
for true

● Then, && is the same as multiplication:
– true * true = true, but true * 0, 0 * true, 0 * 0 = 0

● || is the similar to addition
– false + false = false, but true + 0, true + true, 0 + true =

true

 11

Boolean Operator Precedence

● The precedence of the boolean operators is less
than that of relational operators
– a + 1 > 3 && a < 4 means

((a + 1) > 3) && (a < 4)
● && has greater precedence than ||

– so a && b || c means

(a && b) || c
● This precedence is modeled on the analogy of &&

to multiplication, and || to addition
● ! has high precedence, like the negation operator -

 12

Boolean Operators:
Short-Circuit Evaluation

int x = 3

if (x > 0 || x++ > 1) {

}

● What is the value of x after this execution?
● Java evaluates expressions left-to-right
● If the left operand of an || is true, Java knows it does

not have to evaluate the right operand
● Similarly if the left operand of an && is false
● So Java does not evaluate x++ > 1, and x remains at

three

 13

Short-Circuit Evaluation
Practical Examples

● Division by zero in Java causes an error
– really, an exception, but for now they look like errors

● We can test for the quotient being non-zero, then divide by that
quotient in the same expression, without fear of triggering the
exception

if (q != 0 && (2222 / q) == z) {

● When we talk about arrays (around Oct 7th), we may want to
test for a valid array index, then use that index to access an
array element
– We can do all this in a single boolean expression!
if (index < a.length && a [index] > 0) ...

– again, this code will make more sense once we learn arrays

 14

More Java

● Dangling else
● Enumeration types

 15

Dangling else

● Suppose you have a nested if,
● and it is so simple you don't want to use braces

if (a)

if (b)

System.out.println(“a and b”);

else

System.out.println(“not sure!”);

● Which of the two if statements does the else belong to? Instead
of “not sure”, we could print:
– “a and not b”, if the else belongs to the second if or
– “not a”, if the else belongs to the first if

● In Java, else matches the nearest if, so “a and not b” is correct
● However, this is confusing!

 16

Dangling else Solutions

● Always use the curly braces for if
– remember that we are trying to write clear

code
– this is part of the program structure

● If you are reading someone else's code,
remember that an else goes with the
innermost matching if

 17

Enumeration Types in Java
Motivation

● When a variable can only have a few different values, we can
represent it using an int or a string

● For example, if using a variable to represent animal,
vegetable, or mineral,

int category = 1; // 1 animal, 2 vegetable, 3 mineral

String category = “animal”;

● If we do this, the Java compiler doesn't notice when we assign
a “wrong” value such as 5 or “food”

● To have the compiler check our work, we can create a special
Java data type that only has the values we plan to use
– For example, we may call it Group
Group category = ANIMAL;

 18

Enumeration Types in Java

● Enumeration types only work with a finite number of values
● All of these must be listed in the declaration of the type

public enum Group { ANIMAL, VEGETABLE, MINERAL }

(listing all possible values is called enumerating)
● The values are constant, so we write them in all upper-case
● Then we can compare with == or switch

switch (category) {

case ANIMAL: System.out.println (“meeow”); break;

case MINERAL: System.out.println (“thud”); break;

default: break;

}

 19

Problem Solving in Java

● Tracing Programs
● Test Cases
● Logging
● Flowcharts

 20

Tracing Programs

● Humans can do anything a computer can do
– only more slowly, and not as accurately

● When we are confused by a program (or part of a program), we
can execute it by hand

● We can record the values of variables on paper or on a computer
– don't delete the old values -- just write the new values near the old

ones, so it is clear which value is current
– should also record what the program prints

● When we see an “if”, we must evaluate the condition, and only
execute the relevant part

● This is a very useful learning tool too!
● See Programming Tip 3.5 in the textbook for a detailed example

 21

Test Cases

● A real program has inputs that affect the computation
● Conditionals may do different things depending on the value of

these inputs
● Ideally, we test the program:

– in such a way that every branch of every conditional is executed at least
once

– for all values that are near the boundary of a condition
– e.g. if the condition is x > 3, test for values of 2, 3, and 4
– also test for conditions that the programmer might have forgotten about,

especially 0 and -1
● When we test, we have to verify that the result is correct, so we

have to know what results to expect from the program
● You can develop test cases before writing code!

 22

Logging

● Print statements are useful to try to see what
your program is doing

● But when running the program in daily life, it is
better not to have such print statements

● java.util.logging.Logger lets you turn such print
statements on and off just once for your entire
program
– rather than having to find and fix each print

statement
● Full documentation

https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/Logger.html

 23

Flowcharts

● Flowcharts are a graphical way of showing the
structure of a program

● is used to show a decision point.

 A true arrow leads out of one corner,

 a false arrow out of another corner
● is used to show any other task

 arrows come in from above, leave below
● Flowcharts are good for people who think visually!

 24

Flowchart Example

answer correct? full score

zero score
More details and
examples in the
textbook, section 3.5

 25

Summary

● Comparing:
– Numbers: <, <=, ==, !=, >, >=
– Strings:

● String.equals()
● String.compareTo() combined with

<, <=, ==, !=, >, >=
● Boolean expressions, short-circuit evaluation
● Dangling else, enumeration types
● Problem Solving: Tracing, test cases, logging,

flowcharts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

