
 1

ICS 111
Object Design and

Implementation

● Testing a class
– unit tests

● Design and implementation
● Tracing objects
● Problem solving and common patterns

 2

Testing a Class

● our programs so far always have a main method, so testing means to run the
code

● how do you test a class that doesn’t have a main method?
● if you have an interactive IDE, you can build objects and invoke their methods

through the IDE
– the book mentions bluej.org and drjava.org

● otherwise, you can write a test program to create objects and use methods
from the class, and make sure it works
– this program is often separate from the code that will eventually use your new class
– the program either checks or prints the results of method calls

● to test a method, you need to know what it should do
– what outputs and results are correct
– for the current values of parameters and instance variables

 3

Unit Test

● in some development environments, every class that is developed must be delivered
with other code that tests the functionality of the code

● if the class is X, the testing code is called a unit test for X
– X is the unit being tested

● this at the other extreme from having stub methods: a unit test tests the methods first,
before testing the code that uses the methods

● a unit test should:
– call every method of the class
– try to make sure every code execution path is executed at least once

● for example, if possible, make sure that you are testing both the if and the else part of every conditional
statement (including every else if part)

– also test common cases likely to be used in practice, and that the class is particularly designed for
● the unit test can be used during development to verify functionality
● the unit test should be run again after any changes, to verify that the changes have not

introduced bugs

 4

Class Design and Implementation

1. design all the methods that the class will provide
– for each method, choose a name, return type, and parameter list
– and provide a javadoc explanation of what each method does
– same for each constructor
– if helpful, can write sample code that would call these methods

2. design instance variables that will allow you to implement these methods
– you may have to try different instance variables, different types, or different combinations of

instance variables

3. implement methods and constructors

4. test the class
– a very simple test program might be enough initially

● each of these is a creative activity
– like cooking, it is a creative activity designed to deliver useful outcomes

● in many cases, there is more than one way to do each of these steps

 5

Class Design Philosophy

● If you have trouble describing what a method does, or
choosing a name for it, it may be a good idea to consider
alternatives

● while the design usually guides the implementation
– what we want should determine what we do!

● sometimes the implementation can also guide the (re)design
– what we can do may determine what we want

● as always, compiler errors suggest areas where we haven’t
been thinking clearly, and can be used to focus our redesign
or debugging efforts

 6

Class Design Example

● Let’s say you want to design a class to keep track of grades in a class
● there may be a single method to add a grade:

void addGrade(int value, String gradeType)

– the gradeType could be a String such as “lecture” or “quiz”
– or the gradeType could be an int, with 1 representing lecture, 2 representing quiz, and so on
void addGrade(int value, int gradeType)

● or you may have separate methods:

void addLecture(int value)

void addQuiz(int value)

● you have to decide whether you want to add a date for each value, and if so, in what format
– may use java.util.Date or java.util.Calendar

● then of course you’ll want a method to calculate the final grade

double finalGrade()

● and a method to print all the grades

String toString()

● Then choose instance variables:
– perhaps an ArrayList of integers
– and perhaps an ArrayList of Date or Calendar values
– or perhaps an ArrayList of an object (maybe Grade) that you also define

 7

Tracing Objects

● the state of each object is the collection of the values of
all its instance variables

● if you know the state of an object and the values of the
parameters, you can trace any method

● it is good to group all the instance variables for a single
object together on a page
– the textbook suggests index cards
– a word processor file or text file in a computer is also fine

● multiple objects of the same type each have their own
instance variables

 8

Common patterns:
keeping a total

● everything from grade objects to bank account objects need
to keep a total
– as well as, perhaps, a history

● the total will be a numeric value of type int, long, or double
● class methods can read the value, change the value, or both
● the total value must be initialized by the constructor

– perhaps to a default value such as 0
– perhaps to an initial value, such as when opening an account

● there may be a mutator method to reset or change this total
value

 9

Common patterns:
counters

● computers are good at counting
● it is natural to want to keep track of the number of times

something happens
– needed for computing averages
– may be useful for other things

● a counter may be incremented by a specific method call
● or as a side effect of calling a method whose main purpose is to

do something else (e.g. record a transaction)
● you probably want an accessor method to return the value of the

counter
● and may want a mutator method to reset the counter

 10

Common patterns:
storing values

● it is fairly normal for an object to keep a collection of values of some type
– a shopping cart object holds a collection of intended purchases

● each purchase could be represented as a string
● or each purchase could be represented by a separate Purchase object, with its own

methods

● if you have a fixed number of values to store, you can use an array
● otherwise, it is usually more convenient to use an ArrayList

– for example, ArrayList<Purchase> cart;
● the constructor must initialize this ArrayList

– with cart = newArrayList<Purchase>();
– otherwise cart defaults to null
– and all your methods have to test for the possibility of cart being null

 11

Common patterns:
specific properties

● the object Purchase, described in the previous slide, has several properties:
– name of the item
– price
– quantity
– perhaps other properties, such as color, size, or weight

● generally the constructor will take all these properties and for each initialize a corresponding
instance variable

● some properties may be optional:
– if the instance variable is an Object, it can be set to null
– if it is a basic type, you can provide a boolean companion instance variable to record whether the property is valid

boolean hasColor = false;

● for most properties, it is a good idea to have at least an accessor methods
● often mutator methods are also useful
● a String toString() method is always useful for debugging, should normally be provided
● such a pattern applies to many different possible objects

– including those representing people or objects in any database

 12

Common patterns:
objects in different states

● in Java, the state of an object is the current values of its instance variables
– does not refer to U.S. states!

● some objects have a small number of different states, in which they do distinctly different things
– for example, an item in an online store could be either available, on order, or unavailable

● the methods do different things in different states
– and might even throw java.lang.illegalStateException,
– e.g. if you try to purchase an item that is unavailable

● this state is usually kept in an instance variable
– the variable may be an int, e.g. 1 for available, 2 for on order, 3 for unavailable
– or may be an enum

● calling different methods may cause state transitions
– accomplished by assigning a new value to the state variable

● there is a theory of state machines, theoretical objects in which events cause actions and state transitions
– the combination of event and current state determines the action and next state

● state machines are useful for modeling real-world objects
● state machines are useful for designing networking protocols

– if curious, you can look at page 23 of the original specification of TCP

https://tools.ietf.org/html/rfc793

 13

Common patterns:
object positions

● sometimes objects represent things in the real world
● and sometimes they represent things on a screen
● in either case, the object should record a position
● positions may be 2-dimensional (x, y) or 3-dimensional (x, y, z)
● the object correspondingly needs two or three numeric instance variables

– int, long, or double may each be suitable, depending on the application
● if a velocity needs to be recorded, it can be recorded as a direction (e.g. an

angle) and a speed, or an x-speed and a y-speed
– for three dimensions, we need a speed and two angles, or three dimensions of speed

● similarly for acceleration
● mutator methods that record an object’s motion will change the position

– if a speed is defined, these methods may use speed and time to compute a new position

 14

Summary

● testing and tracing of objects
– unit tests can give you confidence in the

implementation of a method
● it is best to first design an interface for a

class, then implement the interface
– interfaces evolve, and the implementation

has to follow
● but sometimes the implementation dictates

parts of the interface
● many common patterns, all reflected in the

instance variables and the methods that
use and update those instance variables

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

