
 1

ICS 111
Java Classes

● a simple example
● instance methods and static methods

– accessor and mutator instance methods
● instance variables
● modifiers: public, protected, private
● javadoc
● constructors

– default constructors
● the null object reference

 2

Example: Remembering a Value

● A simple kind of object might just remember a single value, perhaps of type String:

public class OneString {

 private String myString;

}

● if you declare two objects of type OneString, each has its own copy of myString

OneString a = new OneString();

OneString b = new OneString();

a.myString may hold a different value from b.myString
● the variable myString is an instance variable: each instance of the class (each object of

type OneString) has its own copy of myString
– can declare a variable static to have a class variable, that is, one global variable:
private static String oneStringToRuleThemAll;

– class variables are rare,instance variables are much more useful and much more common
● Now, let’s think about what methods OneString might need.

 3

Accessor Methods

● Given an object of type OneString, an obvious thing to want to do is to want to get the string stored
in the object

OneString a = new OneString();

String s = a.get();

● get is called an accessor method because it gives access to the values of the instance variables

public class OneString {

 private String myString;

 public String get() {

 return myString;

 }

}

● an instance method (a method declared without static) can use the instance variables of a class
– a static method such as main cannot access instance variables

● instance methods can only be called from an actual object:
– OneString.get() would not compile

● the ArrayList.get(index) method is an accessor method

 4

Mutator Methods

● As well as accessing (reading) the value in an object of type OneString, we
may want to change the value:

OneString a = new OneString();

a.set(“hello world");

● set is called a mutator method because it modifies (mutates) the values of the
instance variables

public class OneString {

 private String myString;

 public void set(String newValue) {

 myString = newValue;

 }

}

● ArrayList.set(index, value) is a mutator method

 5

Instance variables
are always private

● For the simple example of OneString, the instance variable could be public
● in more complicated classes, instance variables should be consistent with one another
● consistent means that changing one requires changing the other in an appropriate way
● for example, in a class keeping track of bank account values, a bank transfer requires

modifying two different accounts in a consistent way
● if we allow code outside the class direct access to instance variables, it is hard to be

sure that all the code accessing these variables maintains the needed consistency
● therefore, as a general rule (general for Java, not just for this class!):

– no instance variable is ever public
● notable exception: array.length

– for now, this means instance variables are always declared private
– later we will learn about protected variables
– access to instance variables is available through accessor methods and mutator methods

 6

Instance variables
are always private: part 2

● For the simple example of OneString, there is only one obvious
implementation of all the methods

● for a more complicated class, we may start with a simple
implementation, and redesign it later
– the simple implementation may just have stub methods and bare-bones

variables
– the later implementation may be full-fledged

● we want the code outside this class to only depend on the
interface of the class (i.e. the method headers), not on the
implementation!
– if String is re-implemented, none of the code that has String variables or
String values or calls String methods should have to change in any way!

 7

Modifiers:
public, protected, private

● A public method can be called by any code in any class in your
program

● A private method can only be called from code within the same
class
– a private instance variable or a private class variable is only in scope

within the class
● A protected method can be called within the class, or within any

class that is below this class in the class hierarchy
– that is, any class that inherits from this class
– what does a class inherit from another class? public methods, protected

methods, and protected variables
– we will see much more about inheritance in later lectures

 8

javadoc

● It is a good habit to document the parameters and return values of each public method

public class OneString {

 private String myString;

 /** accessor method for this object

 @return the value stored in this object

 */

 public String get() {

 return myString;

 }

 /** change the value in this object

 @param newValue the value to be saved

 */

 public void set(String newValue) {

 myString = newValue;

 }

}
● /* this is a comment that may extend over multiple lines */

● The first paragraph describes what the method does
● @param parameter-name describes what each parameter is for
● @return describes what the method returns
● Try this at home!!! run javadoc on the above code, and use a browser to look at the resulting documentation

 9

Javadoc usage

● Javadoc is strongly recommended for all
your public methods

● it is standard documentation in many
software development businesses and
in most open-source projects

● it gives basic information to anybody
using your methods

 10

Need for Constructors

● Instance variables should be initialized, just like any other
variable

● a regular initialization is fine:

private int x = 99;
● sometimes we want the instance variables to be initialized

differently for different objects
● for example, I may want a OneString where the string is

initialized to "hello", and a different OneString that initializes it
to "world"

● constructors allow us to specify these initial values when the
object is created with new

 11

Default Constructor

● if the programmer does not define a
constructor, the instance variables are still
initialized
– to their type-specific default value
– e.g. 0 for int

● this is called the default constructor, and Java
only provides it if the programmer does not
provide an explicit, no-arguments constructor

 12

Programmer-Defined
Constructors

● Let’s add a constructor to the OneString class:

public class OneString {

 private String myString;

 public OneString() {

 myString = new String("");

 }

 public OneString(String init) {

 myString = init;

 }

 public OneString(String init, int repeat) {

 myString = "";

 while (repeat-- > 1) {

 myString = myString + init;

 }

 }

● the constructor must have the same name as the class
● a constructor has no return type

– you can return from a constructor, but cannot return a value
● we can have multiple constructors with different parameter types

– Java uses the types to figure out which constructor you are calling, so you cannot have multiple constructors with the same parameter types
– having multiple methods with the same name (but different parameter types) is called overloading

● it’s ok to overload methods in general, and not just constructors

 13

differences between
constructors and methods

● it is not possible to call a constructor
directly
– unlike a regular method

● a constructor is only called when using
new

● constructors don’t have a return type

 14

Object references and null

● Every reference points to the memory for an object
● every reference except for one, the special value null
● null just means an object reference that doesn’t refer to any object
● null is also the default initialization value for every object reference
● trying to use an instance method on a null object reference results in

throwing a NullPointerException

String s;

if (s.length() == 0) { // throws NullPointerException

● or, to avoid the exception, first test whether a reference is null:

if ((s != null) && (s.length() == ...

 15

Empty and null strings

● String s1 = null;
● String s2 = "";
● String s3 = new String("");

● what is the difference between these
three string values?

 16

Empty and null strings
part 2

● String s1 = null;

– this string variable does not refer to any object
● String s2 = "";

– this string variable refers to an object that is a string of
length 0. It is not a newly created object

● String s3 = new String("");

– this string variable refers to a newly created object that is a
string of length 0

● the book suggests always initializing instance
variables so they do not default to null

 17

Summary

● instance variables are stored in the memory of an object,
and can take different values in different objects
– the main job of a constructor is to initialize all the instance

variables
– accessor and mutator methods provide controlled access

to private variables
● instance methods are not static, and can access instance

variables
– methods (not just constructors) can have the same name

as other methods, as long as the parameter types are
different

● we say that these methods are overloaded
● instance variables are always private, methods are public if

possible
● null is a legal value for any Object reference
● use Javadoc, it is good practice

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

