
 1

ICS 111
Java Exceptions

● Motivation for exceptions
● Java exception hierarchy
● Throwing exceptions
● Catching exceptions
● Runtime systems
● Example

 2

Motivation for Exceptions

● It is good to write code for the expected case:
– non-empty strings
– files that exist
– (sometimes) non-negative numbers

● this code must be correct, and is usually well tested
● what happens with unexpected cases?

– answer 1: crash the program
– answer 2: crash the program, unless the programmer adds code to

handle this exception
● if the programmer wishes to do so

● Java follows answer 2

 3

Throwing Exceptions

● It is good to write code for the expected case:
– non-empty strings
– files that exist
– non-zero numbers

● this code must be correct, and is usually well tested
● what happens with unexpected cases?

throw new IllegalArgumentException("empty string");

throw new java.io.FileNotFoundException(fileName);

throw new ArithmeticException("division by zero");

● notice the difference:
– throw generates the exception
– throws tells the compiler that it’s OK that a method may generate the exception

 4

Throwing Exceptions: Syntax

● The keyword throw, then new, then the constructor for the
exception
– remembering that in Java, everything (except for the 8 basic types) is an

Object
– so Exceptions are a particular kind of objects – they are Throwable objects
– new is used to reserve a space in memory for these objects
throw new IllegalArgumentException("empty string");

throw new java.io.FileNotFoundException(fileName);

throw new ArithmeticException();

● The arguments to the constructor for the exception may take the
empty argument list (), or can take a string describing the reason
the exception was thrown

 5

Throwing Exceptions: Semantics

● Throwing an exception ends execution of the current block
● If the exception is not caught in the method:

– throwing the exception ends execution of the entire method
– and of the method that called that method,
– and so on, until
– throwing the exception ends execution of the entire program

● On the other hand, if the exception is caught, execution continues at the catch
statement
– which may be in the same method as the expression is called
– or in one of the methods that calls that
– and so on, until
– the exception may be caught in the main method
– or may not be caught at all

● The catch statement will be explained next

 6

Catching Exceptions

● If we want to catch an exception that may be thrown by a block of code,
we surround that code with try … catch:

try {

 Scanner in = new Scanner(new File(fileName));

 String line = in.nextLine();

} catch (java.io.FileNotFoundException e) {

 System.out.println("file not found: " + e);

}

● the FileNotFoundException is caught no matter where in this code it is
thrown – even if the constructor for Scanner calls another method that
calls another method that calls another method that throws the exception

● The block following catch is the exception handler

 7

Catching Multiple Exceptions:
explicit catch statements

● We can catch more than one exception for a given block of code:

try {

 Scanner in = new Scanner(new File(fileName));

 String line = in.nextLine();

} catch (java.io.FileNotFoundException e) {

 System.out.println("file not found: " + e);

} catch (java.io.java.util.NoSuchElementException e) {

 e.printStackTrace();

}

● just like if … else if … else if … else, the block of statements for
the first matching catch is executed, the remainder are not

 8

Catching Multiple Exceptions:
more generic exceptions

● Another way of catching multiple exceptions is to catch a more generic
exception:

try {

 Scanner in = new Scanner(new File(fileName));

 String line = in.nextLine();

} catch (Exception e) {

 System.out.println("caught exception: " + e);

}

● This works because every java exception is also a java.lang.Exception
– in the same way that every value in Java (that is not one of the basic types) is an Object

● This second way doesn’t tell our code what exception we caught
– sometimes the code doesn’t discriminate based on the specific exception
– the exception is printed for the user to see

 9

Java Exception Hierarchy

● The Java exceptions are structured in a hierarchy:
– java.lang.Exception belongs to the class of Throwable Objects
– java.lang.RuntimeException and java.io.IOException belong to the class of
Exception Objects

– There are many exceptions that belong to the class of RuntimeException Objects:
● java.lang.ArithmeticException
● java.lang.IndexOutOfBoundsException

– and many exceptions that belong to the class of IOException Objects:
● java.io.FileNotFoundException

● When catching an exception X which belongs to the class of exceptions Y, and
Y belongs to the class of exceptions Z, catching any one of X, Y, or Z will
catch the exception

● That’s why catching Exception will catch any exception that is thrown
– because Exception is the root of the Java Exception Hierarchy

 10

Java Runtime Exceptions

● The general rule is that exceptions that might be thrown
from a method must be declared in the method header (with
throws)
– these are checked exceptions

● The exception to this rule is that Java Exceptions that belong
to the class of RuntimeException Objects do not have to be
declared in the method header
– these are unchecked exceptions

● In general, unchecked exceptions are those that are so
common that catching them, or declaring them with throws,
would make too many programs unnecessarily complicated

 11

try with resources

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResou
rceClose.html

● Sometimes you create a variable and you want to make sure it is closed properly
● try-with-resources will close the resource associated with the variable declared in

the try:

static String readFirstLineFromFile(String path) throws IOException {

 try (BufferedReader br =

 new BufferedReader(new FileReader(path))) {

 return br.readLine();

 }

}

● the resource will be closed both if an exception is thrown, and if it is not
● try-with-resources is especially useful for closing output files!

– example in book, special topic 7.5

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

 12

Runtime System

● What happens to an uncaught exception?

Exception in thread "main" java.lang.StackOverflowError

 at x.infiniteRecursion(x.java:6)

 at x.infiniteRecursion(x.java:6)

● something outside of main catches the exception and prints the call stack
● this something is the same code that called main in the first place
● this code is called the runtime system, and its jobs include:

– doing all the necessary setup to start your program, including
● setting up System.out and System.in
● getting the command-line arguments

– calling main
– catching and handling any uncaught exceptions in main

 13

How the Runtime System Fits In

● The runtime system is in some sense part of the
compiler, but in another sense is a program separate
from the compiler
– the compiler runs at compile time,
– the runtime system runs every time you run your program

● When you run your program from Eclipse, the runtime
system is different from the one I use to run the same
program from the command line

● But all programs that you run from Eclipse use the
same runtime system

 14

Exceptions: an Example

public static void main(String[] args) {

 // throws IndexOutOfBoundsException

 Scanner in = new Scanner(args[0]);

 // throws InputMismatchException, NoSuchElementException, IllegalStateException

 int value = in.nextInt();

 // throws ArithmeticException

 System.out.println("10 / " + value + " is " + 10 / value);

}

● Let’s catch each of these and print
appropriate messages

 15

Example: Just catch Exception

public static void main(String[] args) {

 try {

 Scanner in = new Scanner(args[0]);

 int value = in.nextInt();

 System.out.println("10 / " + value + " is " + 10 / value);

 } catch (Exception e) {

 System.out.println("something went wrong!");

 }

}

● This is not helpful
– Even letting the runtime system catch the exception is more informative
– you can at least print the exception:
 System.out.println("something went wrong! exception " + e);

 16

Example:
catch exceptions you care about

public static void main(String[] args) {

 try {

 Scanner in = new Scanner(args[0]); // throws IndexOutOfBoundsException

 int value = in.nextInt(); // throws InputMismatchException

 System.out.println("10 / " + value + " is " + 10 / value); // throws ArithmeticException

 } catch (IndexOutOfBoundsException e) {

 System.out.println("Error: must have at least one argument");

 } catch (InputMismatchException e) {

 System.out.println("Error: argument must be an integer");

 } catch (ArithmeticException e) {

 System.out.println("Error: argument cannot be zero");

 } // the runtime system catches any remaining exceptions

}

● We could also do this with if statements:

 17

Example:
avoid exceptions you care about

public static void main(String[] args) {

 if (args.length < 1) {

 System.out.println("Error: must have at least one argument");

 return;

 }

 Scanner in = new Scanner(args[0]);

 if (! in.hasNextInt()) {

 System.out.println("Error: argument must be an integer");

 return;

 }

 int value = in.nextInt();

 if (value == 0) {

 System.out.println("Error: argument cannot be zero");

 return;

 }

 System.out.println("10 / " + value + " is " + 10 / value);

}

So we see that there are multiple ways to solve this particular problem...

 18

Philosophy:
when to throw an exception

● When:
– you know your assumptions may not hold, and

● i.e. there are inputs that you cannot handle

– you don’t know what to do about it
● i.e. you can’t handle the situation gracefully

then it’s a good time to throw an exception
● especially if someone else lower in the call stack

might know what to do
● make sure the exception name is meaningful

 19

Philosophy:
when (not) to catch an exception

● When:
– you know what to do with the exception

● especially if your handling of the exception actually fixes the problem

– the buck stops here: if you are in the main method, and your user(s) might not understand the
exception

then it is a good idea to catch and handle the exception
● it is not usually a good idea to catch exceptions that are caused by programming

errors
– except during debugging
– because before you release your program to your users (or the TA), you should take care of

these programming errors
● if in doubt, it is OK to handle an exception

– this is “defensive programming”, akin to “defensive driving” – it is safer
● but as the book points out (programming tip 7.1), it is often better to let the caller

handle the exception

 20

Summary

● We finally see what to do exceptions:
– throw to raise the exception

● include new and any parameters to
the constructor

– catch to handle the exception
– finally for code that must be executed

whether or not an exception occurred
● Exceptions are a useful mechanism

– some exceptions can be avoided with
more conditionals – whether that’s
worth it, is up to the programmer

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

