ICS 111
Java Exceptions

* Motivation for exceptions
* Java exception hierarchy
 Throwing exceptions

» Catching exceptions
 Runtime systems
 Example




Motivation for Exceptions

It is good to write code for the expected case:
- non-empty strings

- files that exist

- (sometimes) non-negative numbers

this code must be correct, and is usually well tested

« what happens with unexpected cases?

- answer 1: crash the program

— answer 2: crash the program, unless the programmer adds code to
handle this exception

« if the programmer wishes to do so
Java follows answer 2




Throwing Exceptions

It is good to write code for the expected case:

- non-empty strings

- files that exist

- non-zero numbers

this code must be correct, and is usually well tested

what happens with unexpected cases?

throw new IllegalArgumentException ("empty string");
throw new java.io.FileNotFoundException (fileName) ;

throw new ArithmeticException("division by zero");

* notice the difference:

- throw generates the exception
- throws tells the compiler that it’s OK that a method may generate the exception




Throwing Exceptions: Syntax

 The keyword throw, then new, then the constructor for the
exception
- remembering that in Java, everything (except for the 8 basic types) is an
Object
- so0 Exceptions are a particular kind of objects - they are Throwable objects
- new IS used to reserve a space in memory for these objects

throw new IllegalArgumentException ("empty string");
throw new java.io.FileNotFoundException (fileName) ;

throw new ArithmeticException();

« The arguments to the constructor for the exception may take the
empty argument list (), or can take a string describing the reason
the exception was thrown




hrowing Exceptions: Semantics

 Throwing an exception ends execution of the current block
* If the exception is not caught in the method:

throwing the exception ends execution of the entire method
and of the method that called that method,

and so on, until

throwing the exception ends execution of the entire program

* On the other hand, if the exception is caught, execution continues at the catch
statement

which may be in the same method as the expression is called
or in one of the methods that calls that

and so on, until

the exception may be caught in the main method

- or may not be caught at all
* The catch statement will be explained next




Catching Exceptions

 If we want to catch an exception that may be thrown by a block of code,
we surround that code with try ... catch:

try |
Scanner 1in = new Scanner (new File (fileName)) ;
String line = in.nextLine();

} catch (java.io.FileNotFoundException e) {

System.out.println("file not found: " + e);

}

» the FileNotFoundException is caught no matter where in this code it is
thrown - even if the constructor for Scanner calls another method that
calls another method that calls another method that throws the exception

* The block following catch is the exception handler



Catching Multiple Exceptions:
explicit catch statements

« \We can catch more than one exception for a given block of code:

try A
Scanner 1n = new Scanner (new File(fileName)) ;
String line = 1n.nextLine();

} catch (java.io.FileNotFoundException e) {
System.out.println("file not found: " + e);

} catch (java.io.java.util.NoSuchElementException e) {
e.printStackTrace () ;

I

 just like if ... else if ... else if ... else, the block of statements for
the first matching catch is executed, the remainder are not




Catching Multiple Exceptions:
more generic exceptions

« Another way of catching multiple exceptions is to catch a more generic
exception:

try A
Scanner 1in = new Scanner (new File(fileName)) ;
String line = in.nextLine();

} catch (Exception e) A
System.out.println ("caught exception: " + e);
h
* This works because every java exception is also a java.lang.Exception

- in the same way that every value in Java (that is not one of the basic types) is an Object
* This second way doesn’t tell our code what exception we caught

- sometimes the code doesn’t discriminate based on the specific exception
- the exception is printed for the user to see



Java Exception Hierarchy

* The Java exceptions are structured in a hierarchy:

- java.lang.Exception belongs to the class of Throwable Objects

- java.lang.RuntimeException and java.io.IOException belong to the class of
Exception Objects

There are many exceptions that belong to the class of RuntimeException Objects:

* java.lang.ArithmeticException
* java.lang.IndexOutOfBoundsException

and many exceptions that belong to the class of 10Exception Objects:

* java.io.FileNotFoundException

« When catching an exception X which belongs to the class of exceptions Y, and
Y belongs to the class of exceptions Z, catching any one of X, Y, or Z will
catch the exception

* That’s why catching Exception will catch any exception that is thrown
- because Exception is the root of the Java Exception Hierarchy



Java Runtime Exceptions

 The general rule is that exceptions that might be thrown
from a method must be declared in the method header (with
throws)

- these are checked exceptions

 The exception to this rule is that Java Exceptions that belong
to the class of RuntimeException Objects do not have to be
declared in the method header

- these are unchecked exceptions

* In general, unchecked exceptions are those that are so
common that catching them, or declaring them with throws,
would make too many programs unnecessarily complicated




try with resources

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResou
rceClose.html

 Sometimes you create a variable and you want to make sure it is closed properly

 try-with-resources will close the resource associated with the variable declared in
the try:

static String readFirstLineFromFile (String path) throws IOException {
try (BufferedReader br =
new BufferedReader (new FileReader (path))) A

return br.readLine () ;

b
» the resource will be closed both if an exception is thrown, and if it is not

 try-with-resources is especially useful for closing output files!
- example in book, special topic 7.5



https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

Runtime System

What happens to an uncaught exception?
Exception in thread "main" java.lang.StackOverflowError
at x.infiniteRecursion (x.java:b)

at x.infiniteRecursion (x.java:b6)

something outside of main catches the exception and prints the call stack

this something is the same code that called main in the first place

this code is called the runtime system, and its jobs include:

- doing all the necessary setup to start your program, including

» setting up System.out and System.in
» getting the command-line arguments

- calling main
— catching and handling any uncaught exceptions in main




How the Runtime System Fits In

 The runtime system is in some sense part of the
compiler, but in another sense is a program separate
from the compiler

- the compiler runs at compile time,
- the runtime system runs every time you run your program

 When you run your program from Eclipse, the runtime
system is different from the one | use to run the same
program from the command line

« But all programs that you run from Eclipse use the
same runtime system



Exceptions: an Example

public static void main(String[] args) {
// throws IndexOutOfBoundsException
Scanner in = new Scanner (args([0]);
// throws InputMismatchException, NoSuchElementException, IllegalStateException
int value = in.nextInt ();
// throws ArithmeticException

System.out.println("10 / " + value + " is " + 10 / value);

}

» Let’'s catch each of these and print
appropriate messages




Example: Just catch Exception

public static void main(String[] args) {

try |
Scanner in = new Scanner (args[0]);
int value = in.nextInt();
System.out.println("10 / " 4+ value + " is " + 10 / wvalue);

} catch (Exception e) {

System.out.println ("something went wrong!");

s
* This is not helpful

- Even letting the runtime system catch the exception is more informative
— you can at least print the exception:

System.out.println ("something went wrong! exception " + e);




Example:
catch exceptions you care about

public static void main (String[] args) A{
try {
Scanner in = new Scanner (args[0]); // throws IndexOutOfBoundsException
int value = in.nextInt(); // throws InputMismatchException

System.out.println("10 / " + value + " is " + 10 / value); // throws ArithmeticException
} catch (IndexOutOfBoundsException e) {
System.out.println ("Error: must have at least one argument");
} catch (InputMismatchException e) {
System.out .println ("Error: argument must be an integer");
} catch (ArithmeticException e) {
System.out .println ("Error: argument cannot be zero");
} // the runtime system catches any remaining exceptions

}

« We could also do this with if statements:




Example:
avold exceptions you care about

public static void main (String[] args) {
if (args.length < 1) {

System.out .println ("Error: must have at least one argument");

return;
}
Scanner in = new Scanner (args[0]);
if (! in.hasNextInt ()) {

System.out.println ("Error: argument must be an integer");

return;
}
int value = in.nextInt ();
if (value == 0) {

System.out.println ("Error: argument cannot be zero");
return;

}
System.out.println("10 / " + value + " is " + 10 / value);

}
So we see that there are multiple ways to solve this particular problem...




Philosophy:
when to throw an exception

e When:

- you know your assumptions may not hold, and
 i.e. there are inputs that you cannot handle

- you don’t know what to do about it
* i.e. you can’t handle the situation gracefully

then it’'s a good time to throw an exception

» especially if someone else lower in the call stack
might know what to do

 make sure the exception name is meaningful




Philosophy:
when (not) to catch an exception

When:

- you know what to do with the exception
» especially if your handling of the exception actually fixes the problem

- the buck stops here: if you are in the main method, and your user(s) might not understand the
exception

then it is a good idea to catch and handle the exception

it is not usually a good idea to catch exceptions that are caused by programming
errors

- except during debugging

- because before you release your program to your users (or the TA), you should take care of
these programming errors

if in doubt, it is OK to handle an exception

- this is “defensive programming”, akin to “defensive driving” - it is safer

but as the book points out (programming tip 7.1), it is often better to let the caller
handle the exception




Summary

* We finally see what to do exceptions:

- throw to raise the exception

* include new and any parameters to
the constructor

- catch to handle the exception

- finally for code that must be executed
whether or not an exception occurred

* Exceptions are a useful mechanism

- some exceptions can be avoided with
more conditionals - whether that’s
worth it, Is up to the programmer




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

